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1. Abstract 

The thermodynamic property data for solid phase I of benzene are reviewed and utilized 

to develop a new fundamental equation of state (EOS) based on Helmholtz energy, 

following the methodology used for solid phase I of CO2 by Trusler [J. Phys. Chem. 

Ref. Data 40, 043105 (2011)]. With temperature and molar volume as independent 

variables, the EOS is able to calculate all thermodynamic properties of solid benzene at 

temperatures up to 470 K and at pressures up to 1800 MPa. The model is constructed 

using the quasi-harmonic approximation, incorporating a Debye oscillator distribution 

for the vibrons, four discrete modes for the librons, and a further thirty distinct modes 

for the internal vibrations of the benzene molecule. An anharmonic term is used to 

account for inevitable deviations from the quasi-harmonic model, which are 

particularly important near the triple point. The new EOS is able to describe the 

available experimental data to a level comparable to the likely experimental 

uncertainties. The estimated relative standard uncertainties of the EOS are 0.2% and 

1.5% for molar volume on the sublimation curve and in the compressed solid region, 

respectively; 8% to 1% for isobaric heat capacity on the sublimation curve between (4 

and 278) K; 4% for thermal expansivity; 1% for isentropic bulk modulus; 1% for 

enthalpy of sublimation and melting; 3% and 4% for the computed sublimation and 

melting pressures, respectively. The equation of state also behaves physically 

reasonable to absolute zero and at very high-pressures. 
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2. Introduction 

Benzene is an organic chemical compound with a ring of six carbon atoms. As a 

prototypical aromatic compound, benzene is one of the most studied molecules with 

numerous experimental studies completed and theoretical models developed.1-8 In 2012, 

Thol et al. proposed a fundamental equation of state for fluid benzene from the melting 

curve to 725 K and at pressures up to 500 MPa.9 Phase diagrams in the pressure-

temperature (p-T) plane are shown for benzene in Figure 1. The phase boundaries in 

these diagrams were constructed by combining the fluid EOS of Thol et al.,9 the 

auxiliary functions developed in this work (Section 4), and results from the literature 

regarding the phase behaviour of benzene at very high pressures.10, 11-13 
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Figure 1. Pressure-temperature (T, p) diagram of benzene for a the solid-liquid-vapor phases 

based on the auxiliary functions  fit to the available solid-fluid equilibrium data (detailed in 

Section 4) and the liquid-vapor equilibrium boundary calculated with the fluid EOS of Thol et 

al 9; b the fluid-solid I-solid II phases, where the phase boundaries and the triple points were 

determined from Chanyshev et al10 with other literature.11-13 The “C + H2” region denotes where 

benzene decomposes. Legend:  critical point (562.02 K, 4.9073 MPa);9  triple point (278.67 

K, 0.00478 MPa for solid-gas-liquid triple phase point).9 
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However, there is no model available to describe accurately all the thermodynamic 

properties of solid benzene. The ability to calculate solid benzene’s thermodynamic 

properties is important in many applications. For example, in the liquefied natural gas 

(LNG) industry, the presence of benzene in the main cryogenic heat exchanger can lead 

to solid freeze-out, blockages, and ultimately LNG plant shutdowns. Significant costs 

($30 million) are associated with unplanned blockage-induced shutdowns.14 Benzene 

is one of the compounds of highest freeze-out risk during LNG production because it 

can be present in natural gas at relatively high concentrations (>1000 ppm) and it has a 

relatively high pure component triple-point temperature (278.67 K).15 To calculate its 

solubility in LNG reliably, accurate descriptions of its fugacity in the solid phase are 

needed at the high pressures and cryogenic temperatures relevant to LNG production. 

Solid phase fugacity calculations are most commonly performed using Eq. (1), which 

was first proposed by Hildebrand and Scott16 and endorsed by Prausnitz.17  

ln(𝑓𝑖
S) = ln(𝜑pure,𝑖

L 𝑝) −
Δ𝐻f,𝑖

𝑅𝑇melt,𝑖
(

𝑇melt,𝑖

𝑇
− 1) +

Δ𝑐𝑝,𝑖
L→S

𝑅
(

𝑇melt,𝑖

𝑇
− 1 + ln (

𝑇

𝑇melt,𝑖
)) 

                                   −
Δ𝑣𝑖

L→S(𝑝−𝑝melt)

𝑅𝑇
       (1) 

where for component i, 𝑓𝑖
S is the solid fugacity; 𝜑pure,𝑖

L  is the fugacity coefficient in the 

liquid phase; Δ𝐻f,𝑖  refers to the enthalpy of fusion; 𝑇melt,𝑖  is the melting 

temperature; Δ𝑐𝑝,𝑖
L→S is the specific heat difference between liquid and solid phase; and 

𝑝melt is the melting pressure. Solid-fluid equilibrium (SFE) conditions are determined 

by equating the solid fugacity of component i with the (partial) fugacity of that 

compound in the fluid (mixture). In most software packages used to calculate SFE 

conditions for mixtures, cubic EOS are frequently implemented to evaluate the fluid 

phase partial fugacities.18 

In 2019, a solid solubility model for LNG-like mixtures was developed by Baker et 

al.,19 using the Peng-Robinson (PR) EOS for the fluid phase and the correlation from 

Eq. (1) for the solid phase. This model, implemented in the software tool ThermoFAST, 

20 was regressed to the available solid-fluid-equilibrium (SFE) data for mixtures by 

tuning the binary interaction parameter of the PR EOS in the fluid side. Such an 

approach ensures that SFE predictions for binary mixtures at LNG-relevant conditions 

will be more accurate than those made using models tuned to VLE data.19, 21 However, 
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predictions made at conditions far from the SFE data used to tune the cubic model are 

less accurate. For example, Siahvashi et al. measured benzene melting temperatures 

that differed from the ThermoFAST predictions by between (3 and 5) K for a vapor 

phase methane + benzene binary at around 230 K15 and also ethane-rich ternary 

mixtures at around 140 K.22 Thus, an alternative and more fundamental approach for 

solid thermodynamic property calculations would be beneficial.  

In 2011, Trusler developed an equation of state (EOS) for solid phase I of carbon 

dioxide in the form of a Helmholtz energy function23 that is valid for temperatures up 

to 800 K and pressures up to 12 GPa. Based on the quasi-harmonic approximation, the 

EOS represents the available experimental data of pressure, molar volume, and isobaric 

heat capacity along the sublimation and melting curves, and molar volume in the 

compressed solid within their uncertainty. This model increases the accuracy of the 

solid CO2 fugacities needed for calculations of solid-liquid equilibria with fluid 

mixtures, including in LNG production where CO2 is also a compound with a high-risk 

of freeze-out. 

Here the approach taken by Trusler for CO2 was followed to develop an EOS for solid 

phase I of benzene using available property data measured along the sublimation curve, 

melting curve and in high-pressure regions. The resulting solid benzene EOS can be 

used to describe all thermodynamic properties in the solid phase I at temperatures and 

pressures up to 470 K and 1800 MPa, respectively. An expression for the solid’s 

fugacity is given in Table 1 (Section 3), which can be used for SFE calculations 

involving mixtures. By reconciling the available thermodynamic data for solid benzene, 

the new model closes the gap between scientific knowledge and engineering 

applications. The purpose of this paper is to introduce the structure of the Helmholtz 

EOS for solid benzene, the method used for parameter optimization and the 

performance of the resulting model representing solid benzene’s thermodynamic 

properties. 

3. Thermodynamic Modelling Basis 

The molar Helmholtz energy for solid benzene is described using an equation of state 

(EOS) with the form: 
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𝐴m(𝑇,  𝑉m) = 𝐴QHA(𝑇, 𝑉m) + 𝐴int(𝑇,  𝑉m) + 𝐴Anharm(𝑇, 𝑉m)  (2) 

 

Here the subscript m denotes a molar basis, while 𝐴QHA(𝑇, 𝑉m) refers to the Helmholtz 

energy based on the quasi-harmonic approximation (QHA). This is a phonon-based 

model designed to describe volume-dependent thermodynamic properties. Further 

detail about 𝐴QHA(𝑇, 𝑉m)  is presented in Section 3.1. The term 𝐴int(𝑇,  𝑉m)  is the 

Helmholtz energy associated with the internal molecular vibrations. In this work, the 

internal modes are described by an Einstein approximation. The internal modes depend 

weakly on crystal volume via its influence on vibrational frequencies. Details about 

𝐴int(𝑇,  𝑉m) are presented in Section 3.2. The anharmonic term, 𝐴Anharm(𝑇, 𝑉m), for 

the Helmholtz energy corrects for various deviations between the QHA and the actual 

behavior of crystals. A description of 𝐴Anharm(𝑇, 𝑉m) is given in Section 3.4.  

All the thermodynamic properties of the solid crystal can be derived from the Helmholtz 

energy A via differentiation.23 Table 1 lists the relationships between each 

thermodynamic property, the Helmholtz energy and its various derivatives. These 

relationships were used in the regression of the EOS to the various experimental data 

sets for different solid phase properties. 
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Table 1. Thermodynamic properties in terms of the Helmholtz energy A, where N is the number 

of molecules, and V is the volume. 

Property Symbol Relationship to A 

Internal energy U = 𝐴 − 𝑇 (
𝜕𝐴

𝜕𝑇
)

𝑁,𝑉
                                                             (3) 

Entropy S = − (
𝜕𝐴

𝜕𝑇
)

𝑁,𝑉
                                                                  (4) 

Pressure p = − (
𝜕𝐴

𝜕𝑉
)

𝑁,𝑇
                                                                   (5) 

Gibbs free energy G = 𝐴 + 𝑝𝑉                                                                    (6) 

Enthalpy H = 𝑈 + 𝑝𝑉                                                                     (7) 

Isochoric heat capacity cv = −𝑇 (
𝜕2𝐴

𝜕𝑇2)
𝑁,𝑉

                                                             (8) 

Isobaric heat capacity cp 

= 𝑐𝑣 + 𝑇
(

𝜕2𝐴

𝜕𝑇𝜕𝑉
)

2

(
𝜕2𝐴

𝜕𝑉2)
𝑁,𝑇

                                                          (9) 

Thermal expansivity α 
= − (

1

𝑉
)

(
𝜕2𝐴

𝜕𝑇𝜕𝑉
)

(
𝜕2𝐴

𝜕𝑉2)
𝑁,𝑇

                                                           (10) 

Isentropic compressibility KS =
𝑐𝑣

𝑐𝑝𝑉(
𝜕2𝐴

𝜕𝑉2)
𝑁,𝑇

                                                               (11) 

Fugacity coefficient φ ln(𝜑) =
𝐴𝑟

𝑅𝑇
−

1

𝑅𝑇𝑉
(

𝜕𝐴𝑟

𝜕𝑉
)

𝑇
− ln (1 −

1

𝑅𝑇𝑉
(

𝜕𝐴𝑟

𝜕𝑉
)

𝑇
)      (12) 

Note: Here 𝐴𝑟 = 𝐴 − 𝐴0, and 𝐴0 is the ideal gas Helmholtz energy where no intermolecular forces exist.  

A formulation for 𝐴0 is given in Eq. (3) of Thol et al.9 

 

3.1. The Quasi-Harmonic Approximation 

As detailed by Trusler,9 the spirit of the quasi-harmonic approximation is to describe 

crystalline solid lattice vibrations via independent harmonic oscillators, the frequencies 

of which are only related to the lattice volume. According to the QHA model,24 at 

temperature T, the configurational Helmholtz energy A for a crystal of volume V with 

N molecules is given by: 

 

𝐴(𝑁, 𝑉, 𝑇) = ∑ 𝑢𝑖𝑗 (
𝑉

𝑁
) +

1

2
∑ ℏ𝜔𝑙 (𝒌,

𝑉

𝑁
)𝒌,𝑙 + 𝑘B𝑇 ∑ ln (1 − exp (−

ℏ𝜔𝑙(𝒌,
𝑉

𝑁
)

𝑘B𝑇
))𝒌,𝑙𝑖<𝑗   (13) 
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Here 𝜔𝑙(𝒌,
𝑉

𝑁
) is the angular frequency of the lth harmonic lattice mode for phonons of 

wavevector k, ℏ is the reduced Plank constant defined as ℏ =  
ℎ

2𝜋
, and 𝑢𝑖𝑗 (

𝑉

𝑁
) is the 

effective pair-potential-energy function for a specific crystal structure that is dependent 

on 
𝑉

𝑁
. 

The intermolecular potential energy and zero-point lattice vibrational lattice energy can 

be combined into a single term for the total configurational energy at zero temperature. 

This combination gives rise to the so-called “cold curve” function described below. 

The third term in Eq. (13), the summation of external lattice vibrations, may be 

evaluated in principal via integration using a density of states function, 𝐺 (𝜔,
𝑉

𝑁
): 

 

𝐴(𝑁, 𝑉, 𝑇) = 𝑈0(𝑁, 𝑉) + 𝑁𝑘B𝑇 (
𝑚

𝑛
) × ∫ 𝐺 (𝜔,

𝑉

𝑁
) ln (1 − exp (−

ℏ𝜔

𝑘B𝑇
)) d𝜔

∞

0
  (14) 

 

where 𝑈0(𝑁, 𝑉) is the total configurational internal energy at zero temperature, while 

m and n are the numbers of external degrees of freedom and molecules per unit cell, 

respectively. The density of states is normalized as:  

 

∫ 𝐺 (𝜔,
𝑉

𝑁
) d𝜔 = 1

∞

0
    (15) 

 

The construction of the density of states serves as a bridge between the crystal’s 

molecular structure and the representation of its properties with a thermodynamic 

model. A convenient way to develop the density of states function is to anchor a 

physical model for the various modes to the unit cell of the crystal lattice.  

The benzene molecule belongs to the D6h point group, possessing a main C6 axis, 

perpendicular to the planar molecule, six C2 axes perpendicular to the C6 axis, three 

symmetry planes and a center of inversion. As shown in Figure 2, the principal axes 

coincide with the central C6 axis, with one set of C2 axes passing through opposing 

carbon atoms and one set of C2 axes passing through opposing C-C mid-bonds. 
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Figure 2. Principal axes for the benzene molecule: in-plane C2 axes and the mutually-orthogonal 

C6 axis. In this plot two C2 axes are shown as representatives of the two sets of C2 axis (one set 

passing through the carbon atoms at opposing vertices and one set passing through the bonds 

that make up opposing edges of the molecule).  

As shown in Figure 3, benzene solid phase I is a face-centered orthorhombic structure. 

Orthorhombic lattices stem from stretching a cubic lattice along two orthogonal axes. 

This results in a rectangular prism with a rectangular base (a1 x a2) and height (a3), such 

that a1, a2, and a3 are distinct and mutually orthogonal. For benzene solid phase I, the 

unit cell is centrosymmetric and at 270 K the cell parameters are a1 = 7.460 Å, a2 = 

7.034 Å and a3 = 9.666 Å.25 

  

Figure 3. (left) Orthorhombic unit cell from the crystal structure of solid phase I benzene.26 

(center) Structure of the unit cell looking down the c-axis with planar molecules seen side on.25 

(right) Visualization of the unit cell with indicative atom locations.27 
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(or hindered rotational) mode. In the Debye-Einstein approximation, the vibrons are 

approximated by a Debye distribution, and the librations (a reciprocating motion in 

which an object rotates repeatedly back and forth about an almost fixed axis28) are 

represented by discrete harmonic terms modelled by the Einstein function. The 

torsional mode is also regarded as harmonic and described by a discrete Einstein term.  

To determine the number of modes in each category, benzene symmetry and 

spectroscopic information in the literature were considered. Thiéry and Léger reported 

that there are three Raman active librational modes (3 × C2 axis) for the benzene 

molecule.29 Another Einstein term is needed to describe the torsional mode because 

there is only one C6 axis per molecule. The remaining two external degrees of freedom 

are attributed to vibrons as described by the Debye distribution. Thus, the density of 

states is constructed with a weighting of 1/3 on the Debye distribution for vibrons and 

2/3 on the discrete harmonic terms for torsion and librons. The expression for the 

density of states based on the Debye-Einstein approximation:30 

 

𝐺 =
𝜔2

𝜔D
3 H(𝜔D − 𝜔) + ∑ 𝑎𝑖𝛿(𝜔𝑖 − 𝜔)𝑀

𝑖=1    (16) 

 

Here ωD is the angular cut-off frequency of the Debye distribution, H(x) is the Heaviside 

step functiona, 𝛿(𝑥) is the Dirac delta function, M is the number of discrete harmonic 

modes, ωi and ai are respectively the angular frequency and the weight of the ith discrete 

harmonic term, and ∑ 𝑎𝑖
𝑀
𝑖=1 =

2

3
. (Note: the factors of 3 associated with the 1/3 weight 

for Debye distribution and the default Debye density of states, 
3𝜔2

𝜔D
3 H(𝜔D − 𝜔), cancel.) 

By considering two Debye modes and four Einstein modes (three librational and one 

torsional modes) for the benzene crystal, the QHA for the molar Helmholtz energy may 

then be expressed as: 

 

𝐴QHA(𝑇, 𝑉m) = 𝐴0(𝑉m) + 𝐴D(𝑇, 𝑉m) + ∑ 𝑎𝑖𝐴𝑖
(lib)𝑁lib

𝑖=1 (𝑇,  𝑉m)  (17) 

                                                 
a H(x) = 0 for x < 0 and H(x) = 1 for x ≥ 0. 
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Here, Vm is the molar volume, 𝐴0(𝑉m) is the cold curve function for the Helmholtz 

energy of the system at absolute zero, 𝐴D(𝑇, 𝑉m) corresponds to the Debye distribution 

and 𝐴𝑖
(lib)(𝑇,  𝑉m) represents the librational and torsional modes.  

Since no experimental data are available at absolute zero, all the properties represented 

by the cold curve are computed via extrapolation of the sublimation curve from above 

zero temperature. To represent the compression behavior of the solid at absolute zero 

with sufficient precision, a fourth-order logarithmic equation of state suggested by 

Poirier and Tarantola31 was used in this work. The molar Helmholtz energy along the 

cold curve is then expressed by: 

 

 𝐴0 = 𝑉00 (
1

2
𝑐1 (ln 𝑧)2 +

1

3
𝑐2 (ln 𝑧)3 +

1

4
𝑐3 (ln 𝑧)4)  (18) 

 

where z is the reduced density (𝑧 = 𝑉00/𝑉m), 𝑉00 is the molar volume of the crystal at 

zero temperature and pressure, while c1, c2 and c3 are parameters related to the bulk 

modulus of the cold crystal and its first two derivatives with respect to pressure.32  

The Helmholtz energy of the Debye distribution for lattice vibrations is:30, 33 

 

𝐴D = 𝑅𝑇 (2 ln (1 − exp (−
𝜃D

𝑇
)) −

2

3
D3 (

𝜃D

𝑇
))   (19) 

 

Here 𝜃D is the characteristic temperature for the Debye distribution with the definition 

of 𝜃D  = ℏ𝜔D/𝑘B. Physically, it reflects the energy associated with the highest normal 

vibrational mode of a crystal, and links the solid’s elastic properties to its 

thermodynamic properties including thermal expansion, heat capacity and enthalpy.34 

Importantly, the characteristic temperature for the Debye distribution depends on 

crystal volume as detailed below, while D3(𝑧) is the Debye function: 
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D3(𝑧) = (
3

𝑧3) ∫
𝑥3d𝑥

e𝑥−1

𝑧

0
    (20) 

 

The Helmholtz energy associated with each librational and torsional mode is given by:30, 

33 

 

𝐴𝑖
(lib)(𝑇,  𝑉m) = 𝑅𝑇ln (1 − exp (−

𝜃𝑖
(lib)

𝑇
))  (21) 

 

Here 𝜃𝑖
(lib)

 is the characteristic temperature for each Einstein mode defined by 𝜃𝑖  =

ℏ𝜔𝑖/𝑘B. The characteristic temperatures for the librational and torsional mode also 

depend (in principle) on crystal volume, as characterized by the Grüneisen parameters 

detailed in Section 3.3. 

3.2. Internal Modes 

There are thirty internal modes for an isolated benzene molecule: ten single and ten 

doubly-degenerate modes, as shown in Table 2. These modes can be identified via the 

infrared and Raman spectra observed for the solid phase I.29, 35-48 In this work, each 

internal mode is described by the Einstein approximation and thus their contribution to 

the crystal’s Helmholtz energy is given by the following two equations: 

 

𝐴int(𝑇,  𝑉m) = ∑ 𝑑𝑖𝐴𝑖
(int)𝑁int

𝑖=1 (𝑇,  𝑉m)    (22) 

𝐴𝑖
(int)

(𝑇,  𝑉m) = 𝑅𝑇ln (1 − exp (−
𝜃𝑖

(int)

𝑇
))   (23) 

 

where 𝑁int is the total number of internal modes, 𝑑𝑖 represents the weighting of the 

single (𝑑𝑖 = 1) or the doubly-degenerate (𝑑𝑖 = 2) modes, and 𝜃𝑖
(int)

 is the Einstein 

characteristic temperature for the internal modes. Each 𝜃𝑖
(int)

 is a constant, or a weakly 

dependent function of volume, with all parameters determined from spectroscopy.  
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3.3. Grüneisen Parameters 

The Grüneisen parameter represents the thermal pressure from a collection of vibrating 

atoms with the general definition of  

 

𝛾 =
𝑉m

𝑐𝑣
(

d𝑝

d𝑇
)

𝑉
     (24) 

 

The dependence of the characteristic temperatures on crystal volume can be quantified 

via the Grüneisen parameters: 

 

𝛾D = −(d ln 𝜃D/d ln 𝑉m)     (25) 

𝛾𝑖 = −(d ln 𝜃𝑖/d ln 𝑉m)     (26) 

 

The Grüneisen parameters themselves vary with the expansion or compression of the 

crystal, and this variation may be approximated via an empirical model: 

 

𝛾D = 𝛾D,0(𝑉m/𝑉00)𝑞D     (27) 

𝛾𝑖 = 𝛾𝑖,0(𝑉m/𝑉00)𝑞𝑖     (28) 

 

Here 𝛾D,0 and 𝛾𝑖,0 are the corresponding Grüneisen parameters at zero temperature, and 

𝑞D and 𝑞𝑖  are exponents specific to each mode, which need to be determined when 

constructing an EOS. The characteristic temperatures at a specific molar volume Vm are 

then expressed as  

𝜃D = 𝜃D,0 exp ((
𝛾𝐷,0

𝑞𝐷
) (1 − (

𝑉m

𝑉00
)

𝑞D
))   (29) 

𝜃𝑖 = 𝜃𝑖,0 exp ((
𝛾𝑖,0

𝑞𝑖
) (1 − (

𝑉m

𝑉00
)

𝑞𝑖
))   (30) 
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In cases where the exponent vanishes (e.g. 𝑞𝑖 = 0), the expressions simplify (e.g. 𝜃𝑖 =

𝜃𝑖,0(𝑉𝑚/𝑉00)−𝛾𝑖 ). The 𝜃𝑖  are written as 𝜃𝑖
(lib)

 and 𝜃𝑖
(int)

 in Eqs. (21) and (23), 

respectively. 

The Grüneisen parameters for the external modes were determined via regression of ten 

parameters: the Debye mode coefficients (𝛾D,0, 𝑞D) and the four pairs of Einstein mode 

coefficients (𝛾𝑖,0 and 𝑞𝑖). The Grüneisen parameters for the internal modes were not 

fitted but were instead obtained from the spectroscopic literature or were estimated 

when only very few data were available for a given mode based on the values known 

for other modes. The Grüneisen parameter and the values of 𝜃𝑖,0 can be determined 

from the frequencies 𝜐𝑖 of each mode via 𝛾 = − (
𝜕ln𝜈𝑖

𝜕ln𝑉
)

𝑇
 and 𝜃𝑖,0 =

ℎ𝜐𝑖

𝑘B
. Table 2 lists 

the internal modes of the benzene molecule together with their corresponding frequency 

(wavenumber) and characteristic temperature.   

Table 2. Internal modes for benzene labelled with Wilson notation.49 The representation of all 

modes comes from Figure 1 of Gardner and Wright.50 Those labelled with “a” and “b” are 

degenerate modes, and others are single modes. 

No. Notation ν/cm-1 

1 

 

992 (195 K) 39 

2 

 

3065 (195 K) 39 
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3 

 

1350 (270.15 K) 40 

4 

 

704 (261.15 K) 35 

5 

 

996 (216.15 K) 35 

6a 

 

607 (270.15 K) 40 

6b 

7a 

 

3055 (270.15 K) 40 
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7b 

 

8a 

 1600 (270.15 K) 40 

 

8b 

 

9a 

 
1170 (261.15 K) 35 

9b 

 

10a 

 

859 (261.15 K) 35 
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10b 

 

11 

 

685 (261.15 K) 35 

 

 

12 

 

1010 (261.15 K) 35 

 

13 

 

3070 (261.15 K) 35 

 

14 

 

1311 (261.15 K) 35 

 

15 

 

1147 (261.15 K) 35 
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16a 

 405 (261.15 K) 35 

 

16b 

 

17a 

 975 (261.15 K) 35 

 

17b 

 

18a 

 
1036 (261.15 K) 35 

 

18b 
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19a 

 1478 (261.15 K) 35 

 

19b 

 

20a 

 
3081 (261.15 K) 35 

 

20b 

 

 

No comprehensive study of the variation with pressure of the frequencies, and thus the 

Grüneisen parameters, exists for all modes at different temperatures. However, Thiéry 

and Léger did report on the variation of seven frequencies  (𝜐1, 𝜐2, 𝜐5, 𝜐6, 𝜐7, 𝜐8 and 

𝜐9) with pressure up to 1516 MPa for the solid phase I of benzene at 294 K.29 To 

calculate their characteristic temperatures at 𝑉m = 𝑉00  and the corresponding 

Grüneisen parameters, these seven wavenumbers 𝜐𝑖 were examined as functions of the 

molar volume 𝑉m estimated by Katrusiak et al.51 from an isothermal chart at 295 K. The 

molar volume of the crystal is relatively insensitive to temperature and the change 

caused by considering 295 K instead of 294 K is negligible. The value of 𝑉00 obtained 

from extrapolation of the literature data52, 53 is 69.80 cm3/mol. As indicated in Figure 5, 
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ln (𝜐1) and ln (𝑉m/𝑉00) show a linear relationship. This dependence also applies to the 

other six frequencies. It was assumed that 𝑞𝑖 = 0 for all modes so that Eq. (28) becomes  

𝛾𝑖 = 𝛾𝑖,0 , and the Grüneisen parameters determined at 294 K can be used at any 

temperature. 

 

Figure 5. Wavenumber 𝜐1 (frequency of one internal mode) for solid benzene at 294 K as a 

function of molar volume. : experimental data from Thiéry and Léger;29 the black solid line 

is the linear regression. 𝑉00 refers to the zero temperature cell volume. 

 

The limited data available in the literature for other internal modes means their 

dependence on molar volume cannot be calculated. For these modes, the corresponding 

values of the Grüneisen parameters and exponents were set to be zero with the 

supposition that the characteristic temperatures for these internal modes do not vary 

with molar volume. For each wavenumber, 𝜃𝑖,0  was computed from the averaged 

reported frequency 𝜐𝑖 . Satisfactory results for all thermodynamic properties were 

achieved using this assumption. 

 

3.4.  Anharmonic Term  

Significant deviations from the QHA model are to be expected, especially in the region 

near the triple point and at high temperatures where the crystal volume is largest. This 

is even more true for benzene in comparison with other models of pure molecular solids 

based on the QHA, like CO2, because benzene has a comparatively complex structure. 
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A renormalization method to correct the QHA for anharmonic effects was developed 

by Wu and Wentzcovitch54 for metal oxides. They found that a single temperature and 

volume dependent parameter was sufficient to capture anharmonic effects. In the 

development of a Helmholtz EOS for solid CO2, Trusler followed this method, stating 

that the correction to the Helmholtz energy varies as T 4 at low temperatures23, 55 and 

could be represented with the following expression: 

 

𝐴Anharm(𝑇, 𝑉m) = 𝑏1𝑅𝜃D,0 (
(

𝑇

𝜃D,0
)

4

1+𝑏2(
𝑇

𝜃D,0
)

2) exp (𝑏3 (
𝑉m−𝑉00

𝑉00
)) (31) 

 

Here three more parameters b1, b2 and b3 are introduced. The anharmonic effect for 

solid benzene is represented by the above equation which depends exponentially on 

changes in molar volume. At high temperatures, the anharmonic correction quantifies 

the departure from the Dulong-Petit limit56 for the lattice heat capacity: a negative 

(positive) value of b1 means the deviation is positive (negative).  

 

3.5.  Thermodynamic Property Functions Derived from the Helmholtz 

Energy A 

In this section, the expressions for each of the thermodynamic properties listed in Table 

1 are given in terms of the contributions considered in Eq. (2). For any molar 

thermodynamic property, Zm: 

 

𝑍m(𝑇,  𝑉m) = 𝑍QHA(𝑇, 𝑉m) + 𝑍int(𝑇,  𝑉m) + 𝑍Anharm(𝑇, 𝑉m)  (32) 

 

This can be further expanded as: 

 

𝑍m(𝑇,  𝑉m) = 𝑍0(𝑉m) + 𝑍D(𝑇, 𝑉m) + ∑ 𝑎𝑖𝑍𝑖
(lib)𝑁lib

𝑖=1 (𝑇,  𝑉m) +

∑ 𝑑𝑖𝑍𝑖
(int)𝑁int

𝑖=1 (𝑇,  𝑉m) + 𝑍Anharm(𝑇, 𝑉m)     (33) 
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When deriving explicit expressions for each of the thermodynamic properties in Table 

1, it is convenient to define the following functions: 

 

𝑓𝐴 =
(

𝑇

𝜃D,0
)

4

1+𝑏2(
𝑇

𝜃D,0
)

2    (34) 

𝑓𝐴1 =
2(

𝑇

𝜃D,0
)

3

(2+𝑏2(
𝑇

𝜃D,0
)

2

)

(1+𝑏2(
𝑇

𝜃D,0
)

2

)

2     (35) 

𝑓𝐴2 =
2(

𝑇

𝜃D,0
)

2

(6−3𝑏2(
𝑇

𝜃D,0
)

2

+𝑏2
2(

𝑇

𝜃D,0
)

4

)

(1+𝑏2(
𝑇

𝜃D,0
)

2

)

3     (36) 

𝑓𝑉 = exp (𝑏3
𝑉𝑚−𝑉00

𝑉00
)    (37) 

 

Then each of the terms in Eq. (33) can be written for each thermodynamic property as 

follows:  

for the internal energy U, 

 

𝑈0 = 0      (38) 

𝑈D = 2𝑅𝑇D3 (
𝜃D

𝑇
)    (39) 

𝑈𝑖 =
𝑅𝜃𝑖

exp(
𝜃𝑖
𝑇

)−1
     (40) 

𝑈Anharm = 𝑏1𝑅𝜃D,0 (𝑓𝐴 − (
𝑇

𝜃D,0
) 𝑓𝐴1) 𝑓𝑉   (41) 

 

for entropy S, 
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𝑆0 = 0      (42) 

𝑆D = 2𝑅 (
4

3
D3 (

𝜃D

𝑇
) − ln (1 − exp (−

𝜃D

𝑇
)))   (43) 

𝑆𝑖 = 𝑅 (
(

𝜃𝑖
𝑇

)

exp(
𝜃𝑖
𝑇

)−1
− ln (1 − exp (−

𝜃𝑖

𝑇
)))   (44) 

𝑆Anharm = −𝑏1𝑅𝑓𝐴1𝑓𝑉     (45) 

 

for pressure p,  

 

𝑝0 = 𝑐1𝑧 ln 𝑧 + 𝑐2𝑧 (ln 𝑧)2 + 𝑐3𝑧 (ln 𝑧)3   (46) 

𝑝D =
𝛾D𝑈D

𝑉m
     (47) 

𝑝𝑖 =
𝛾𝑖𝑈𝑖

𝑉m
     (48) 

𝑝Anharm = −𝑏1 (
𝑏3

𝑉00
) 𝑅𝜃D,0 (

(
𝑇

𝜃D,0
)

4

1+𝑏2(
𝑇

𝜃D,0
)

2) 𝑓𝑉   (49) 

 

and for isochoric heat capacity cv, 

 

𝑐𝑣,0 = 0     (50) 

𝑐𝑣,D = 2𝑅 (D3 (
𝜃D

𝑇
) − (

𝜃D

𝑇
) 𝐷3

′ (
𝜃D

𝑇
))    (51) 

𝑐𝑣,𝑖 =
𝑅(

𝜃𝑖
𝑇

)
2

exp(
𝜃𝑖
𝑇

)

(exp(
𝜃𝑖
𝑇

)−1)
2     (52) 

𝑐𝑣,Anharm = −𝑏1𝑅 (
𝑇

𝜃D,0
) 𝑓𝐴2𝑓𝑉    (53) 

 

The isobaric heat capacity, isotropic compressibility and thermal expansivity can then 

be evaluated using the partial derivatives (
𝜕𝑝

𝜕𝑉
)

𝑇
 and/or (

𝜕𝑝

𝜕𝑇
)

𝑉
: 
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𝑐𝑝 = 𝑐𝑣 − 𝑇
(

𝜕𝑝

𝜕𝑇
)

𝑉

2

(
𝜕𝑝

𝜕𝑉
)

𝑇

    (54) 

𝐾𝑆 = −
𝑐𝑣

𝑐𝑝𝑉 (
𝜕𝑝

𝜕𝑇
)

𝑉

    (55) 

𝛼 = −
1

𝑉𝑚

(
𝜕𝑝

𝜕𝑇
)

𝑉

(
𝜕𝑝

𝜕𝑉
)

𝑇

     (56) 

 

Each of the terms in Eq. (33) needed for (
𝜕𝑝

𝜕𝑉
)

𝑇
 and (

𝜕𝑝

𝜕𝑇
)

𝑉
are then determined as 

follows: 

 

(
𝜕𝑝0

𝜕𝑉
)

𝑇
= − (

𝑧

𝑉m
) (𝑐1(1 + ln 𝑧) + 𝑐2(2 + ln 𝑧) ln 𝑧 + 𝑐3(3 + ln 𝑧) (ln 𝑧)2) (57) 

(
𝜕𝑝D

𝜕𝑉
)

𝑇
= (𝛾D

′ −
𝛾D

𝑉m
) (

𝑝

𝛾D
) − 𝑅𝜃D (

𝛾D

𝑉m
)

2
𝐷3

′ (
𝜃D

𝑇
)   (58) 

(
𝜕𝑝𝑖

𝜕𝑉
)

𝑇
= (

𝑝𝑖𝛾𝑖

𝑉m
) (

𝑉m𝛾𝑖
′−𝛾𝑖

𝛾𝑖
2 +

(
𝜃𝑖
𝑇

) exp(
𝜃𝑖
𝑇

)

exp(
𝜃𝑖
𝑇

)−1
− 1)  (59) 

(
𝜕𝑝anharm

𝜕𝑉
)

𝑇
= −𝑏1 (

𝑏3

𝑉00
)

2
𝑅𝜃D,0 (

(
𝑇

𝜃D,0
)

4

1+𝑏2(
𝑇

𝜃D,0
)

2) 𝑓𝑉 (60) 

(
𝜕𝑝0

𝜕𝑇
)

𝑉
= 0     (61) 

(
𝜕𝑝D

𝜕𝑇
)

𝑉
=

𝛾D𝑐𝑣,D

𝑉m
    (62) 

(
𝜕𝑝𝑖

𝜕𝑇
)

𝑉
=

𝛾𝑖𝑐𝑣,𝑖

𝑉m
     (63) 

(
𝜕𝑝anharm

𝜕𝑇
)

𝑉
= −𝑏1 (

𝑏3

𝑉00
) 𝑅𝑓

𝐴1
𝑓

𝑉
  (64) 
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Here 𝐷3
′ (𝑧) is the first derivative of D3(𝑧)b, and the prime refers to the derivative with 

respect to V.  

4. Auxiliary Function 

The sublimation and melting pressures of solid benzene were obtained by solving the 

equality of Gibbs free energy between the fluid equation of state from Thol et al. 9 and 

this fundamental equation for the solid. The original reference EOS for fluid benzene 9 

does not cover conditions below the triple point or densities above 11.45 mol/dm3 as 

required in the vicinity of the solid phase equilibrium curves. There is also an upper 

pressure limit at 500 MPa. To obtain Gibbs energies at SFE conditions from the 

reference fluid EOS, the fluid model was extrapolated in this work to the necessary 

conditions of temperature and density (or pressure). Numerical values produced by this 

extrapolation are provided in the Supplementary Information as part of the Excel sheet 

labelled “Benzene sample calculation”. 

During the development of this solid model, auxiliary functions for sublimation and 

melting were proposed to estimate initial phase equilibrium pressures for saturated 

property calculations. Parameters from the two auxiliary equations were regressed to 

the same experimental data that were fitted to the EOS as described in Sections 6.1 and 

6.2. In this approach, one degree of freedom is eliminated as temperature and 

equilibrium pressure are input to the property regression along the sublimation and 

melting curves. Auxiliary functions also enable users to quickly calculate the solid-fluid 

equilibrium condition by simply entering temperature. 

For the sublimation curve, the equation is expressed as: 

 

𝑝sub = 𝑝t ∗ exp (
𝑇t

T
∗ (𝑒1 ∗ (1 −

𝑇t

𝑇
) + 𝑒2 ∗ (1 −

𝑇t

𝑇
)

3

2
+ 𝑒3 ∗ (1 −

𝑇t

𝑇
)

5

))  (65) 

 

                                                 

b 𝐷3
′ (𝑧) = − (

3

𝑧
) D3(𝑧) +

3

e𝑧−1
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where 𝑇t and 𝑝t are the triple point temperature (278.67 K) and pressure (0.00478 MPa); 

𝑒1= -19.47, 𝑒2= -0.75865 and 𝑒3= -61.633. 

 

For the melting curve, the auxiliary function is: 

 

𝑝melt = 𝑝t ∗ (1 + 𝑒4 ∗ (
𝑇

𝑇t
− 1)

5

6
+ 𝑒5 ∗ (

𝑇

𝑇t
− 1)

3

2
)   (66) 

 

The coefficients are 𝑒4= 92000 and 𝑒5= 254000. 

Equations (65) and (66) are valid over the temperature ranges of (193 to 278.67) K and 

(278.67 to 363) K, corresponding to the respective ranges of available experimental 

data. The functional forms allow the two formulations to meet at the triple point. Results 

are discussed in Sections 6.1 and 6.2. 

5. Parameter Optimization 

The parameter optimization process followed the method used by Trusler for solid 

CO2.
23 However, one major difference with and CO2 is that there are very limited bulk 

modulus data for solid benzene and thus no pre-fitting process regarding the bulk 

modulus was performed. For solid CO2, the pre-fitting process had two purposes: to 

determine the number of librational modes and to provide an estimated value for 
𝛾D,0

𝑐1
. 

Here, for solid benzene, the number of librational modes was fixed as stated in Section 

3.1, and the value of 
𝛾D,0

𝑐1
 was regressed directly in the global fitting procedure.  

The first step is to identify parameters that can be determined independently of the 

regression. As detailed previously, the characteristic temperatures of the internal modes 

were taken from the spectroscopic data; the corresponding Grüneisen parameters were 

either calculated from the experimental data or set to be zero in cases where insufficient 

measurements exist. Similar to the solid CO2 EOS, all the Grüneisen exponents are set 

to be zero. Parameters for the internal modes are given in Table 3. 
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Table 3. Parameters that were not regressed for this equation of state. 

Parameter Value Parameter Value 

𝑉00/(cm3∙mol-1) 69.80 d1 to d5 1 

𝑞
𝜃1,0

(int) to 𝑞
𝜃20,0

(int) 0 d6 to d10 2 

𝑎1 3 d11 to d15 1 

𝑎2 1 d16 to d20 2 

𝜃1,0
(int)

/K 

𝜃2,0
(int)

/K 

1427.4 

4415.3 

𝛾
𝜃1,0

(int)   0.0447 

𝛾
𝜃2,0

(int)   0.0331 

𝜃3,0
(int)

/K 

𝜃4,0
(int)

/K 

1942.3 

1014.8 

𝛾
𝜃3,0

(int)    0 

𝛾
𝜃4,0

(int)   0 

𝜃5,0
(int)

K 1456.6 𝛾
𝜃5,0

(int)    0.051 

𝜃6,0
(int)

/K 872.3 𝛾
𝜃6,0

(int)   0.0046 

𝜃7,0
(int)

/K 4384.1 𝛾
𝜃7,0

(int)   0.0299 

𝜃8,0
(int)

/K 2311.4 𝛾
𝜃8,0

(int)  0.0202 

𝜃9,0
(int)

/K 1703.8 𝛾
𝜃9,0

(int)  0.0256 

𝜃10,0
(int)

/K 1239.0 𝛾
𝜃10,0

(int)   0 

𝜃11,0
(int)

/K 989.5 𝛾
𝜃11,0

(int)   0 

𝜃12,0
(int)

/K 1453.2 𝛾
𝜃12,0

(int)   0 

𝜃13,0
(int)

/K 4398.3 𝛾
𝜃13,0

(int)    0 

𝜃14,0
(int)

/K 1886.3 𝛾
𝜃14,0

(int)    0 

𝜃15,0
(int)

/K 1650.5 𝛾
𝜃15,0

(int)    0 

𝜃16,0
(int)

/K 587.5 𝛾
𝜃16,0

(int)    0 

𝜃17,0
(int)

/K 1407.7 𝛾
𝜃17,0

(int)    0 

𝜃18,0
(int)

/K 1490.6 𝛾
𝜃18,0

(int)    0 

𝜃19,0
(int)

/K 2126.7 𝛾
𝜃19,0

(int)    0 

𝜃20,0
(int)

/K 4421.3 𝛾
𝜃20,0

(int)   0 

Here, 𝜃𝑖,0
(int)

 𝑞
𝜃𝑖,0

(int)and 𝛾
𝜃19,0

(int) refer to the Einstein characteristic temperature, Grüneisen exponents, and 

Grüneisen parameters for each internal mode. Coefficients of ai and di are the weight for ith discrete 

harmonic term for librational/torsional modes and internal modes. 
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The next step is to define the number of parameters required for the QHA and 

anharmonic corrections. As discussed in Section 3.1, there are four Einstein modes 

(three for libration and one for torsion) in the QHA model. Nonetheless, the three 

librational modes might share the same characteristic temperature and Grüneisen 

parameter. Considering there are three parameters (characteristic temperature, 

Grüneisen parameter and Grüneisen exponent) for each mode, over-fitting might occur 

if all the twelve variables are used. In the initial stage, it was assumed that there are 

only two different characteristic temperatures with independent Grüneisen parameters 

and exponents in the external Einstein model: one for the librational and the other for 

the torsional mode, respectively. Thus, fifteen parameters needed to be regressed in the 

initial stage (six from the librational and torsional modes, three from the Debye 

distribution, three from the cold curve and three from the anharmonic correction) to the 

measured thermodynamic properties. The coefficients were assumed to be 𝑎1 = 3 for 

libration and 𝑎2 = 1 for torsion. Additionally, the value of the gas-phase entropy at the 

triple point anchors the solid’s enthalpy and has a significant influence on the phase 

equilibrium pressure calculations performed with the fluid model. Since the absolute 

value of enthalpy or entropy between equilibrium states cannot be observed 

experimentally, a reference value Sm(g, Tt, pt) may be assigned for the gas phase entropy 

at the triple point as part of the tuning process without influencing any of the calculated 

solid properties. At the triple point, the differences in the entropy and enthalpy between 

the fluid and the solid (Δ𝑆m,t and Δ𝐻m,t), were computed as: 

 

Δ𝑆m,t = 𝑆m(g, 𝑇t, 𝑝t) − 𝑆m,fluid(𝑇t, 𝑝t)   (67) 

Δ𝐻m,t = 𝐺m,solid(𝑇t, 𝑝
t
) + 𝑇t ∗ 𝑆m(g, 𝑇t, 𝑝

t
) − 𝐻m,fluid(𝑇t, 𝑝

t
)  (68) 

 

where 𝑆m,fluid(𝑇t, 𝑝t)  is the molar entropy at the triple point calculated from the 

reference fluid EOS, 𝐺m,solid(𝑇t, 𝑝t) refers to the molar Gibbs free energy at the triple 

point calculated from the solid model, and 𝐻m,fluid(𝑇t, 𝑝t) is the molar enthalpy at the 

triple point calculated from the reference fluid EOS. At a given (T, p) condition, Δs
g
𝐻m, 

and Δ𝐺sub were calculated as: 
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Δs
g

𝐻m(𝑇, 𝑝) = 𝐻m,fluid(𝑇, 𝑝) − (𝐻m,solid(𝑇, 𝑝) − Δ𝐻m,t)   (69) 

Δ𝐺sub(𝑇, 𝑝) = 𝐺m,fluid(𝑇, 𝑝) − 𝐺m,solid(𝑇, 𝑝) + Δ𝐻m,t − 𝑇 ∗ Δ𝑆m,t (70) 

 

Here 𝐻m,fluid(𝑇, 𝑝)and 𝐺m,fluid(𝑇, 𝑝) are respectively the molar enthalpy and Gibbs 

free energy from the fluid model, and 𝐻m,solid(𝑇, 𝑝) and 𝐺m,solid(𝑇, 𝑝) are those from 

the solid EOS. Phase equilibrium exists where Δ𝐺sub(𝑇, 𝑝) becomes zero. Values of 

Δs
l 𝐻m and Δ𝐺melt(𝑇, 𝑝) can also be determined via Eqs. (69) and (70).  

In total, sixteen parameters were adjusted to fit all the available thermodynamic 

properties. The global fit was achieved via minimization of the objective formulation 

given below: 

 

𝜒2 = ∑ ∑ 𝑤(𝑗) (
(𝑋𝑖

(𝑗)
−𝑋𝑖,fit

(𝑗)
)

𝑋
𝑖
(𝑗) )

2
𝑁data
𝑖=1

𝑁prop

𝑗=1
   (71) 

 

where X refers to a thermodynamic property, 𝑋𝑖
(𝑗)

 is the ith experimental data point for 

the property (j) where j refers to the listed property in Table 4, 𝑋𝑖,fit
(𝑗)

 is the calculated 

value for property (j) at condition i from the equation of state, 𝑤(𝑗) is the weighting 

factor for that data point, and N is the total number of data points tuned. Additionally, 

limiting constraints were used in the fit to ensure that the behavior of the EOS was 

physically reasonable within the range of validity where no data exist. 

The values used for the weighting factors are empirical and were determined by the 

scale of the RMS deviation, the uncertainty of experimental data (if stated in the 

corresponding publication) as well as their location in the solid-phase region, and the 

sensitivity of each property in the regression. For enthalpies of sublimation and melting, 

and phase equilibrium calculations, the weighting factors are also influenced by the 

enthalpy and Gibbs free energy values computed from the fluid model. In this work, 

different literature sources for a given thermodynamic property were generally treated 

equally because there is no obvious evidence that some data are of higher quality than 

others. However, data that were read from a plot or are clearly of lower accuracy were 
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assigned half the wi values of others. Additionally, two different weighting factors were 

used for heat capacities above and below 200 K because otherwise, the fitting at high 

temperatures would deviate excessively in absolute terms even when the relative 

differences are small: cp,m (T→0) →0, while cp,m (T = 200 K) and cp,m (T = 270 K) are 

approximately (84 and 123) J∙K-1∙mol-1. The thermodynamic property regression to the 

low temperatures was performed by restricting the thermal expansivity to be positive 

when T→0. The Grüneisen parameter was also constrained to be close to the value of 

𝛾D,0 at temperatures between (0 and 30) K: as stated by Trulser,23 𝛾 is expected to reach 

the value of 𝛾D,0 as 𝑇 → 0 under the Debye-Einstein approximation. This helped avoid 

unphysical property calculation results and anomalous values of γ. At high pressures, 

the model’s behavior is physically reasonable and no further regression was performed. 

Values of 𝑤𝑖
(𝑗)

 used in the regression are tabulated in Table 4, where the subscript 

denotes the specific property to which the weighting factor refers. 

Table 4. List of weighting factors used for thermodynamic property regression and low 

temperature behavior. The subscript denotes the property to which the weighting factor was 

applied.  

 Property Value 

Sublimation 𝑤𝑉𝑚,1
 1 

𝑤𝑐𝑝,m(𝑇<200 K) 3 

𝑤𝑐𝑝,m(𝑇>200 K) 10 

𝑤𝛼1
 3 

𝑤Δ𝐻
 a 3 

𝑤𝐾𝑆
 3 

𝑤𝐺sub
 3 

Melting 𝑤𝐺melt
 3 

Single-phase data measured at high-pressure 𝑤𝑉𝑚,2
 1 

𝑤𝛼2
 3 

Low temperature behavior 𝑤𝛼low
 1 

𝑤𝛾low
 1 

a. Enthalpies of sublimation and melting were fitted together. 
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The regression was performed by fitting to one property at a time in sequence until all 

were represented adequately. The impact of each parameter on each thermodynamic 

property was studied as shown in Table 5. In the initial stages of fitting, only the 

Grüneisen parameters 𝛾  and exponents q were tuned to the molar volume Vm. 

Characteristic temperatures 𝜃 and anharmonic factors b1 to b3 were then included when 

fitting to heat capacities. It was found that the thermal expansivity could be fit 

adequately with these four types of parameters as well. The cold curve parameters c1 to 

c3 were then added to describe the isentropic bulk modulus, and the gas entropy value 

at triple point was utilized for enthalpy and phase equilibria descriptions. Ultimately, 

sixteen tuned parameters allow the EOS to compute properties in excellent agreement 

with the experimental data, satisfy reasonable physical behavior where there is no data, 

and keep the exponent values small. The best fit parameters are listed in Table 6. 

Compared with the 𝛾  values in Table 3, the Grüneisen parameters for the external 

modes are much larger than those for the internal modes, which indicates that the 𝜃𝑖
(int)

 

are comparatively insensitive to variations in the molar volume, as might be expected. 

 

Table 5. List of the parameters and the effect on thermodynamic properties 

Parameters Most sensitive properties  Notes 

c1 and c2 𝑉m and KS cp, α, H, Gsub and Gmelt (mild impact) 

c3  Small impact on all properties 

𝜃D,0, 𝜃1,0
(lib)

 and 𝜃2,0
(lib)

 

 

cp and H 

 

α, KS, Gsub and Gmelt (mild impact) 

𝛾D,0, 𝛾
𝜃1,0

(lib) and 𝛾
𝜃2,0

(lib) Almost all properties  

𝑞D, 𝑞
𝜃1,0

(lib) and 𝑞
𝜃2,0

(lib) α, H, Gsub and Gmelt  

𝑏1, 𝑏2 and 𝑏3 Almost all properties  

Sm(g, Tt, pt) H, Gsub and Gmelt  
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Table 6. Best-fit parameter values for the optimized solid benzene equation of state. 

Parameter Value 

c1/MPa 7011 

c2/MPa 17963 

c3/MPa 76005 

𝜃D,0  101.1 

𝜃1,0
(lib)

  140.2 

𝜃2,0
(lib)

  130.4 

Sm(g, Tt, pt) /(J∙mol-1∙K-1) 291.93 

qD -5 

𝑞
𝜃1,0

(lib) -5 

𝑞
𝜃2,0

(lib) 5 

𝛾D,0  2.96 

𝛾
𝜃1,0

(lib) 0.368 

𝛾
𝜃2,0

(lib)  9.25 

b1 -0.0094 

b2 0.053 

b3 0.17 

6. Comparison with Data 

Results of the fit for each individual property are summarized in Table 7 to Table 9, 

with data separated into the phase-change measurements on the sublimation curve and 

on the melting curve, and the high pressure single-phase region. Inconsistent data that 

are obviously outliers were excluded in the regression process. The statistical measures 

of absolute average relative deviations (AAD) and root mean square (RMS) deviation 

for a given property (j) were calculated via the following equations: 

 

AAD(𝑋(𝑗)) =

∑ |
𝑋

𝑖
(𝑗)

−𝑋
𝑖,fit
(𝑗)

𝑋
𝑖
(𝑗) |

𝑁𝑋
(𝑗)

𝑖=1

𝑁𝑋
(𝑗)     (72) 
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RMS(𝑋(𝑗)) =
√

∑ (
𝑋

𝑖
(𝑗)

−𝑋
𝑖,fit
(𝑗)

𝑋
𝑖
(𝑗) )

2

𝑁𝑋
(𝑗)

𝑖=1

𝑁𝑋
(𝑗)     (73) 

 

Here 𝑁𝑋
(𝑗)

 is the total number of points considered for a literature data source reporting 

a given property (j). 

6.1. Data on the Sublimation Curve 

For solid benzene, most of the reported data in the literature are on the sublimation 

curve. The summary for the experimental data is given in Table 7, and the results are 

shown from Figure 6 to Figure 11. Benzene properties obtained via simulations are 

summarized in Table S1. Only the data that were selected for regression are exhibited 

in the figures (this also applies to the latter sections) because the outliers result in 

significantly large deviations.  
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Table 7. Summary for the experimental data and the corresponding fitted results (root-mean square (RMS) deviations and absolute average relative deviations 

(AAD)) along the sublimation curve. The subscript “all” refers to all the reported data in the literature, and “tuned” refers to the data that were fitted in this 

work.  

Property Source Year T/K Nall Ntuned RMSall/% AADall/% RMStuned/% AADtuned/% 

Vm Andrew and Eades57 1953 78.2, 270.2 2 0 0.67 0.58 - - 

Andrews and Ubbelohde58 1955 278.7 1 1 0.17 0.17 0.17 0.17 

Bacon et al.59 1964 138, 218 2 2 0.79 0.78 0.79 0.78 

Biltz et al.60 1930 90.2, 194.2 2 2 0.14 0.12 0.14 0.12 

Cox and Bragg61 1932 251 1 0 2.87 2.87 - - 

Cox et al.62 1958 270.2 1 1 0.58 0.58 0.58 0.58 

Craven et al.63 1993 4.9-278.6 15 15 0.52 0.51 0.52 0.51 

Dunitz and Ibberson52 2008 5.5-274 15 15 0.23 0.18 0.23 0.18 

Ferche64 1891 278.5 1 0 0.79 0.79 - - 

Fortes and Capelli53 2018 10-275 12 12 0.19 0.16 0.19 0.16 

Heuse65 1930 20 1 1 0.76 0.76 0.76 0.76 

Heydweiller66 1897 270.2-276.6 8
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Andrews et al.71 1926 255.2-278.5 4 0 10.19 8.85 - - 

Brucksch and Ziegler72 1942 15-270 28 28 1.63 1.48 1.63 1.48 

Dewar73 1913 50 1 1 4.47 4.47 4.47 4.47 

Diedrich74 2005 180.2-270.2 19 0 4.23 3.95 - - 

Hahnenkamp75 2008 190-270 17 17 0.87 0.74 0.87 0.74 

Huffman et al.76 1930 92.6-259.5 16 16 1.62 1.56 1.62 1.56 

Maass and Waldbauer77 1925 93.2-273.2 10 0 7.30 6.49 - - 

Nan78a 2004 78.4-265.0 55 55 1.06 0.85 1.06 0.85 

Nernst79 1911 24.4-200.9 12 12 5.90 4.67 5.90 4.67 

Oliver et al.80 1948 13-278.6 92 92 3.72 2.51 3.72 2.51 

Stull81b 1937 90-270 19 19 1.73 1.62 1.73 1.62 

α Craven et al.82a 1993 19.0-285.5 12 9 19.19 13.61 8.69 6.81 

Ferche64 1891 275.2 1 0 23.19 23.19 - - 

Fortes and Capelli53a 2018 18.3-263.0 11 11 7.47 6.55 7.47 6.55 

KS Brunel83 1979 270 1 1 4.22 4.22 4.22 4.22 

Heseltine et al.84 1964 170-250 9 9 1.23 0.92 1.23 0.92 

Δs
g
𝐻m Růžička et al.85 2014 150-270 13 13 1.18 1.00 1.18 1.00 

psub
c Barker86 1910 195.7 1 0 24.75 24.75 - - 

Choi and Brown87 1966 227.7-273.2 4 3 1.50 1.25 0.92 0.82 
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De Kruif and Van Ginkel88 1977 183.0-197.0 10 0 2.23 1.76 - - 

De Kruif89 1980 183.4-196.7 10 0 1.02 0.81 - - 

Deitz90 1933 184.3-200.2 4 2 5.01 3.74 1.09 0.93 

Ferche64 1891 272.3-278.5 30 26 4.86 2.37 1.14 0.77 

Ha et al.91 1976 228.7-273.2 14 14 0.89 0.70 0.89 0.70 

Jackowski92 1974 220.8-278.7 21 14 3.71 2.41 1.17 0.89 

Kiss93 1972 234.3-277.2 17 15 1.47 1.03 0.76 0.67 

Liu and Dickhut94 1994 257.8-268.2 2 0 15.76 14.04 - - 

Milazzo95 1956 195.2-273.1 10 10 1.16 0.84 1.16 0.84 

Milazzo96 1956 195.2-257.2 6 6 1.18 1.11 1.18 1.11 

Miljevic et al.97 1977 202.1-278.5 39 35 1.42 0.82 0.63 0.52 

Mündel98 1913 214.6-238.1 7 0 9.47 9.35 - - 

Radulescu and Alexa99 1938 273.2-277.2 3 2 8.01 5.71 1.97 1.76 

Rastogi et al.100 1967 260.2-273.2 5 0 20.56 19.57 - - 

Růžička et al.85 2014 233.2-260.7 36 36 0.25 0.22 0.25 0.22 

Young101 1910 263.2-273.2 2 0 24.06 22.52 - - 

a) Data were read from a plot and were assigned half of the weighting factor. b) The apparatus was calibrated based on the data reported by Huffman et al.76 c) the fitting for 

sublimation was calculated as |
𝐺𝑖

fluid−𝐺𝑖,fit
solid 

𝐺𝑖
fluid | using experimental (T, p) as inputs, and the results are exhibited in the form of pressure in Figure 11. Here for the ith point, 𝐺𝑖

fluid 

refers to the Gibbs energy from the fluid model, 𝐺𝑖,fit
solid  is the fitted Gibbs energy from the solid EOS.
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 Figure 6. Comparison between the molar volume data, Vm, along the sublimation curve and the 

equation of state fit as a function of temperature. a. Vm measurements and model calculations 

(black curve); b. fractional deviations from the experimental data. Legend: + Andrews and 

Ubbelohde;58  Bacon et al.;59  Biltz et al.;60  Cox and Smith;102  Craven et al.;63  Dunitz 

and Ibberson;52  Fortes and Capelli;53  Heuse;65  Heydweiller;66  McConville et al.;68 + 

Ziegler and Ditzel.69 

 

Figure 6 exhibits the literature molar volume data along the sublimation curve. 

Experimental methods include neutron and X-ray diffraction. It can be observed that 

the data from Craven et al.,63 Dunitz and Ibberson,52 Fortes and Capelli,53 Heydweiller66 

and McConville et al.68 deviate by up to 0.5% from the model at a given temperature, 

and contribute to most of the deviations in the plot. These data sources were kept in the 

regression process, as only outliers that deviate from the other data points by more than 
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1% were excluded. Biltz et al.60 reported the uncertainty of measurement is around 

0.3%, while uncertainties were not reported for most of the literature data. The equation 

of state matches the molar volume from Dunitz and Ibberson52 and Fortes and Capelli53 

well. Overall, good agreement has been achieved for the molar volume data along the 

sublimation curve, well within the consistency of different experimental data sets.  

 

 

Figure 7. Comparison between the isobaric heat capacity data, cp, along the sublimation curve 

and the equation of state fit as a function of temperature. a. cp measurements and model 

calculations (black curve); b. fractional deviations from the experimental data. Legend: + 

Ahlberg et al.;70  Brucksch and Ziegler;72  Dewar;73  Hahnenkamp;75  Huffman et al.;76 

 Nan;78  Nernst;79  Oliver et al.;80  Stull.81 
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Figure 8. Comparison between the thermal expansivity data, α, along the sublimation curve and 

the equation of state fit as a function of temperature. a. α measurements and model calculations 

(in a black curve); b. fractional deviations from the experimental data. Legend: + Craven et 

al.;82  Fortes and Capelli.53 
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Figure 9. Comparison between the isentropic bulk modulus data, KS, along the sublimation 

curve and the equation of state fit as a function of temperature. a. KS measurements and model 

calculations (in a black curve); b. fractional deviations from the experimental data. Legend: + 

Brunel;83  Heseltine et al.84  

 

  



42 

 

 

Figure 10. Comparison between the enthalpy of sublimation (melting) data, Δ𝐻 , and the 

equation of state description as a function of temperature. a. enthalpy measurements and model 

calculations (black curve for sublimation and red curve for melting); b. fractional deviations 

from the experimental data. Legend for enthalpy of sublimation: + Růžička et al.85 Legend for 

enthalpy of melting:  Azreg-Aïnou;103, 104  Bridgman;105  Xu et al.106  

 

In Figure 7 it can be observed that the deviations for isobaric heat capacity at low 

temperatures are less than 10% for most points, and at T > 50 K almost all the cp data 

can be described within 2.5%. Although most data do not include such estimates, 

Huffman et al.76 stated the uncertainty of their reported heat capacities, determined via 

an aneroid calorimeter, should be less than 1%. In the low temperature region, it is 

difficult to tune to the experimental values within a few percent because the reported 

values are very small (less than 10 J∙K-1∙mol-1), and data from different sources are 
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inconsistent at the level of (1 to 3) J∙K-1∙mol-1. One datum at 3.8 K from Ahlberg et al.70 

exhibits a deviation of -30.6% from the model and for clarity is not exhibited in Figure 

7.  

Figure 8 shows how the thermal expansivities calculated with the tuned model follow 

the data’s trend with temperature and can describe most of the points within 10%. The 

two worst cases of 14% and 19% are at (89 and 19) K, respectively. The reported values 

from Craven et al.82 and Fortes and Capelli53 differ by between (5 to 12)% at a given 

temperature. It seems that thermal expansivity is relatively hard to regress well; for 

solid CO2 the AAD in this property is 11.7%.23 The deviations calculated for benzene’s 

thermal expansivity exhibited a trend with parameter adjustment that was contradictory 

to those for enthalpy, sublimation, and isentropic bulk modulus. As a result, thermal 

expansivity calculations were allowed to deviate more systematically at temperatures 

below 150 K to enable a good representation of the other properties. 

Figure 9 exhibits the isentropic bulk modulus along the sublimation curve, which were 

obtained via elastic constants measured by Brillouin scattering83 and from speed of 

sound measurements.84 The inclusion of the cold curve parameters c1 to c3 in the model 
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Figure 11. Comparison between the sublimation pressure measurements, psub, and the equation 

of state fit as a function of temperature. a. sublimation pressure measurements and model 

calculations (in a black curve) on a logarithmic vertical scale; b. fractional deviations from the 

experimental data. Legend: + Choi and Brown;87  Deitz;90  Ferche;64  Ha et al.;91  

Jackowski;92  Kiss;93  Milazzo;95  Milazzo;96  Miljevic et al.;97  Radulescu and 

Alexa;99 + Růžička et al.85 red dashed curve in the main plot and the inset: auxiliary function. 

The triple point is (278.67 K, 4780 Pa). 

 

To calculate a sublimation pressure, a solid-vapor phase equilibrium state must be 

identified where the difference between the molar Gibbs free energy of the solid and 

fluid phases vanishes. In this work, psub was determined by finding the condition where 

the Gm value calculated with the new fundamental equation of state equaled that 
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determined with the extrapolated reference EOS for the fluid. Růžička et al.85 used static 

method with a STAT6 apparatus to measure the vapor pressure with an uncertainty 

around 0.5%. The solid EOS can describe the majority of the experimental sublimation 

pressures within a deviation of 5%, with only six points excepted. At temperatures 

below 220 K, the data from Milazzo,95 Milazzo96 and Miljevic et al.97 differ from the 

calculated sublimation pressures by up to 10%; the small pressure values in this low 

temperature region are more difficult to fit with small relative differences. The auxiliary 

function matches the EOS calculations very well, with exceptions at temperatures 

below 195 K where no data exist. 

6.2. Data on the Melting Curve 

A data summary for the measurements performed along the melting curve is presented 

in Table 8 and shown in Figure 12. Melting data achieved via computation are listed in 

Table S1. Results for the enthalpy of fusion were presented in Figure 10 and are not 

discussed further in this subsection.  
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Table 8. Summary for the experimental data and the corresponding fitted results (root-mean square (RMS) deviations and absolute average relative deviations 

(AAD)) along the melting curve. The subscript “all” refers to all the reported data in the literature, and “tuned” refers to the data that were fitted in this work. 

Property Source Year T/K Nall Ntuned RMSall/% AADall/% RMStuned/% AADtuned/% 

Δs
l 𝐻m Azreg-Aïnou103, 104a 2006 284.6-306.7 10 3 5.01 4.48 1.84 1.53 

Bridgman105 1914 278.6-477.4 12 12 2.41 1.73 2.41 1.73 

Osugi et al.110 1965 288.2-298.2 3 0 8.80 8.44 - - 

Xu et al.106 2007 306.4-466 10 10 2.76 2.54 2.76 2.54 

pmelt
b Azreg-Aïnou103, 104 2006 284.6-306.7 10 10 0.68 0.59 0.68 0.59 

Block111, 112c 1913 298.2-324.2 5 5 0.10 0.09 0.10 0.09 

Bridgman105 1914 305.7-463.7 10 0 0.50 0.43 - - 

Bridgman113 1949 297.2 1 1 0.24 0.24 0.24 0.24 

Deffet114 1935 283.2-305.2 6 6 0.52 0.31 0.52 0.31 

Deffet115 1942 293.1-300.6 2 2 0.13 0.11 0.13 0.11 

Domanska and Morawski116 2005 293.2-353.2 7 7 0.16 0.14 0.16 0.14 

Domanska and Morawski117 2007 328.2-363.2 8 8 0.16 0.15 0.16 0.15 

Easteal et al.118 1985 281.3-310.3 12 10 1.07 0.54 0.25 0.17 

Figuière et al.119 1978 298.2-324.2 6 6 0.25 0.23 0.25 0.23 

Fruhling120 1951 306.5-331.2 2 2 0.32 0.32 0.32 0.32 

Ghelfenstein and Szwarc121 1975 298.2-324.2 3 3 0.11 0.11 0.11 0.11 

Hulett122 1899 279.2-290.7 22 12 55.35 12.88 0.34 0.27 
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Makita and Takagi123  1968 283.2-323.2 7 6 0.51 0.30 0.14 0.13 

Nagaoka124 1987 283.2-323.2 7 7 0.45 0.33 0.45 0.33 

Osugi125 1968 288.2-298.2 4 1 1.51 1.26 0.43 0.43 

Pruzan126 1976 301.7-324.2 2 2 0.36 0.32 0.36 0.32 

Pruzan127 1979 302-325 2 2 0.52 0.49 0.52 0.49 

Sun et al.128 1987 279.6-323.1 11 8 1.69 0.89 0.13 0.10 

Tanaka and Kawakami129 1996 278.8-323.2 10 8 36.93 12.1 0.61 0.50 

Xu et al.106 2007 306.4-466.0 10 0 0.52 0.44 - - 

Yokoyama et al.130 1993 294.7-329.8 8 4 0.46 0.40 0.46 0.40 

a) Data were obtained from fitted correlations. b) the fitting for melting was calculated as |
𝐺𝑖

fluid−𝐺𝑖,fit
solid

𝐺𝑖
fluid | using experimental (T, p) as inputs, and the results are exhibited in the 

form of pressure in Figure 12. Here for the ith point, 𝐺𝑖
fluid refers to the Gibbs energy from the fluid model, 𝐺𝑖,fit

solid  is the fitted Gibbs energy from the solid EOS. c) Data were 

obtained from Table 1 of Figuière et al.119
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Figure 12. Comparison between the melting pressure measurements, pmelt, and the equation of 

state fit as a function of temperature. a. pmelt measurements and model calculations (in a black 

curve); b. fractional deviations from the experimental data. Legend: + Azreg-Aïnou;103, 104  

Block;111, 112 
 Bridgman;113  Deffet;114  Deffet;115  Domanska and Morawski;116  

Domanska and Morawski;117  Easteal et al.;118  Figuière et al.119;  Fruhling;120 + 

Ghelfenstein and Szwarc;121  Hulett;122  Makita and Takagi;123  Nagaoka;124  Osugi;125 

 Pruzan;126  Pruzan;127  Sun et al.;128  Tanaka and Kawakami;129  Yokoyama et al.;130 

red dashed curve in the main plot and the inset: auxiliary function. The triple point is (278.67 

K, 0.00478 MPa). 

 

Similar to the sublimation pressure, pmelt was calculated by estimating an equality of 

the Gibbs free energies calculated with the solid EOS developed in this work and the 

reference EOS for fluid benzene. The majority of the melting point data are represented 

within 5%, with only a few exceptions located mostly near the triple point. In this region 

the measurements have relatively large uncertainties (e.g. for Azreg-Aïnou,103, 104 
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ur(pmelt, 284.6 K) = 5.8% and ur(pmelt, 306.7 K) = 1.2%). At a given temperature, the 

reported pressures from various sources differ systematically by up to 10%, particularly 

those measured around 300 K. However, it is unclear which data set is more accurate 

and thus all were retained in this work. The auxiliary function behaves nearly identical 

to the solid EOS: in the main figure of subplot b the red dashed curve vanishes near the 

zero line. 

 

6.3. Single-phase Data Measured at High Pressure 

Single-phase data at high pressures are listed in Table 9 and shown in Figure 13 and 

Figure 14. Simulation results in the literature are summarized in Table S2. Some of the 

measurements reported by the authors include data for other solid phases of benzene 

(e.g. solid phase II); these are not included here. 
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Table 9. Summary of the experimental data and the corresponding fitted results (root-mean square (RMS) deviations and absolute average relative deviations 

(AAD)) for single-phase data measured at high pressures. The subscript “all” refers to all the reported data in the literature, and “tuned” refers to the data that 

were fitted in this work. 

Property Source Year T/K p/MPa Nall Ntuned RMSall/% AADall/% RMStuned/% AADtuned/% 

Vm Budzianowski and Andrzej131 2005 296 300-1100 3 2 2.88 2.00 0.54 0.53 

Figuière et al.119a,b 1978 253.2-324.2 0-490 114 114 1.47 1.41 1.47 1.41 

Hofmann and Kuleshova132 2014 138-270 100 4 0 2.89 2.55 - - 

Katrusiak et al.51b 2010 295 79.5-1287.9 40 40 0.63 0.48 0.63 0.54 

ΔVm
c Bridgman133 1941 323.2 490-981 2 0 8.41 8.41 - - 

Bridgman134 1942 298.2-348.2 490-981 4 0 10.80 9.16 - - 

Bridgman113 1949 297.2 245-981 3 0 0.33 0.33 - - 

cp,m Ross et al.135 1979 300 206.6-1600 7 0 5.77 5.10 - - 

α Fuchs et al.136 1979 253.6-355.2 0.4-411.1 164 155 15.20 6.70 4.85 4.15 

Pruzan et al.127 1979 302-325 113-657 31 31 5.28 4.36 5.28 4.36 

Pruzan et al.137 1986 268-355 16-423.5 40 0 20.69 16.52 - - 

a) Data were read from a plot and were assigned half of the weighting factor. b) Data were obtained from fitted correlations. c) it refers to the volume decrement upon 

compression at a given temperature.



51 

 

 

Figure 13. Comparison between the molar volume data Vm measured for the solid phase at high 

pressures and the equation of state fit as a function of pressure. a. Vm measurements and model 

calculations; b. fractional deviations from the experimental data. Legend: + Budzianowski and 

Andrzej131 (296.00 K);  Figuière et al.119 (253.15 K);  Figuière et al.119 (273.15 K);  

Figuière et al 119 (298.15 K);  Figuière et al.119 (301.65 K);  Figuière et al.119 (313.15 K);  

Figuière et al.119 (324.15 K);  Katrusiak et al.51 (295.00 K). The model descriptions for 

different data sets are given in the corresponding colored curves. 
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Figure 14. Comparison between the thermal expansivity data, α, measured for the solid phase 

at high pressure and the equation of state fit as a function of pressure. a. α measurements and 

model calculations; b. fractional deviations from the experimental data. Legend: + Fuchs et 

al.136 (253.60 K);  Fuchs et al.136 (265.00 K);  Fuchs et al.136 (272.40 K);  Fuchs et al.136 

(278.80 K);  Fuchs et al.136 (287.80 K);  Fuchs et al.136 (301.40 K);  Fuchs et al.136 (314.20 

K);  Fuchs et al.136 (324.70 K);  Fuchs et al.136 (355.16 K);  Pruzan et al.127 (302.00 K); 

+ Pruzan et al.127 (325.00 K). 

 

Figure 13 compares the experimental molar volume at high pressures with the equation 

of state. The differences are within 2.5% for all the data with very few exceptions. The 

reported Vm from Figuière et al.119 were either read from a plot or calculated via a 

correlation that was fitted to the experimental data. Thus, they are not of the same 

quality as the molar volumes reported along the sublimation curve. Experimental 
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methods include X-ray diffraction (Budzianowski and Andrzej,131 Hofmann and 

Kuleshova,132 and Katrusiak et al.51), sylphon method (Figuière et al.119) and neutron 

scattering (Hofmann and Kuleshova132). 

For high pressure thermal expansivity, both Fuchs et al.136 and Pruzan et al.127 used the 

piezothermal method for their calorimetric measurements. In Figure 14, the data have 

deviations from the model of less than 10%. At 302 and 325 K, the two literature 

sources are inconsistent by 10%. It is not clear which data set should be given with 

primary consideration, and this model produces a compromise of the reported values.  
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7. Uncertainty and Physical Behavior Examination 

The resulting EOS is able to describe all thermodynamic properties of solid benzene at 

temperatures up to 470 K and at pressures up to 1800 MPa. Based on comparisons with 

the experimental data, the estimated relative uncertainties for molar volume are 0.2% 

on the sublimation curve increasing to 1.5% in the compressed solid. For isobaric heat 

capacity on the sublimation curve, the uncertainties are 8% for T < 20 K, 4% for 20 ≤ 

T/K ≤ 50, and 1% for T < 50 K. The uncertainties for other calculated properties are 

estimated to be 4% for thermal expansivity; 1% for isentropic bulk modulus; 1% for 

enthalpy of sublimation and melting; and 2% and 3%, respectively for the computed 

sublimation and melting pressures. For the heat capacity of the compressed solid, the 

data from Ross135 at 300 K were read from a plot and stated to have a relative 

uncertainty of 10% uncertainty. They were not included in the tuning process and 

deviate from the optimised model with a relative RMS deviation of 5.8%. The solid 

model’s description of sublimation and melting enthalpies as well as the solid-fluid 

equilibrium conditions have an uncertainty that includes the extrapolation of the 

reference fluid EOS. The accuracy of these extrapolated fluid values is difficult to 

quantify because there are no experimental data for comparison.  

It is important to examine whether the model’s behavior is physical within the range of 

validity for this equation of state at conditions where no data exists. This helps ensure 

the model’s predictions are reasonable when it is used at conditions beyond those 

incorporated by the regression. Figure 15 shows the pressure, isentropic bulk modulus, 

isobaric expansivity, and thermal pressure coefficient calculated for several isotherms 

and at saturated conditions. Similar to the results for solid CO2,
23 the pressure isotherms 

become parallel in the low molar volume region. The isentropic bulk modulus does not 

vary much with temperature but is dependent on the molar volume, decreasing sharply 

at conditions away from the triple point. The isobaric expansivity increases rapidly from 

0 to 200 K (at 0 K it is zero), while above 200 K it becomes insensitive to temperature. 

The thermal pressure coefficient 𝛽 = (
𝜕𝑝

𝜕𝑇
)

𝑉
 exhibits a similar dependence on 

temperature. At the triple point, the isentropic bulk modulus and thermal expansivity 

reach a minimum and maximum, respectively. In the physical property plots, the 

highest temperature is 450 K instead of 470 K because the latter isotherm is very close 
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to the triple point (solid I-solid II-fluid) temperature and remains in the solid phase for 

a relatively small range of molar volumes.  

 

 

Figure 15. Thermodynamic properties calculated from the equation of state to examine the 

thermodynamic surface behavior. a. p-Vm curves; b. isentropic bulk modulus KS; c. isobaric 

expansivity α; d. thermal pressure coefficient β. 

 

Figure 16 exhibits the solid molar heat capacities calculated as a function of temperature 

along the saturation curves. The lattice heat capacity, determined from cv,m-cint, reaches 

a limit of 6.7R at temperatures above 300 K. At 470 K, the contribution of the internal 
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modes bring cv,m and cp,m to 18R and 20R, respectively. The isobaric heat capacity 

increases appreciably as the temperature approaches the triple point condition where 

the solid is in its most expanded state. 

 

Figure 16. Molar heat capacities Cm as functions of temperature along the saturation 

(sublimation and melting) curve. Curves: dark red: lattice heat capacity (cv,m-cint)/R; purple: 

isochoric heat capacity cv,m/R; dark blue: isobaric heat capacity cp,m/R. Vertical dashed line: 

triple point temperature. 

 

The Grüneisen parameters are weakly dependent on the molar volume except at 0 K. 

As shown in Figure 17, at temperatures above 100 K, γ hardly changes with molar 

volume and lies in a range between 1 and 2.5. In the global fit process, the Grüneisen 

parameter behavior at 0 K was constrained manually to ensure no obvious local maxima 

or minima occurred.   

 



57 

 

 

Figure 17. Grüneisen parameter γ curves for isotherms and saturated conditions as a function 

of molar volume.  

 

8. Conclusions 

For the first time, a reference Helmholtz equation of state for solid I benzene has been 

developed which can be used to calculate all thermodynamic properties. The EOS is 

physically based on the quasi-harmonic approximation and can be used for property 

calculations at temperatures up to 470 K and pressures up to 1800 MPa with confidence. 

It represents the available experimental data for solid benzene either within their 

experimental uncertainty or with a deviation similar to the scatter between data sets. 

New measurements of bulk modulus and heat capacity in the compressed solid would 

be useful, as there are currently no reliable data at any condition. New measurements 

of molar volume, thermal expansivity, and sublimation and melting equilibrium with 

lower uncertainties could provide insight into which data sets should be eliminated, as 

currently this equation of state strikes a balance in the systematic differences between 
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data from several authors. It may be possible to use the approach applied here to develop 

physically-based solid-phase EOS for industrial relevant compounds including toluene, 

cyclohexane and p-xylene.  

 

9. Supplementary Information 

There are two separate parts to the attached the Supplementary Information: (i) 

comparisons between this solid model and simulation-based literature data, and (ii) 

sample calculations made with this solid model, the extrapolated fluid EOS, and the 

auxiliary functions.  
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