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Abstract 

 

Despite intense efforts, general thermodynamic modelling of aqueous electrolyte solutions still 

presents a difficult challenge, with no obvious method of choice. Even though the Pitzer 

equations seemingly provide a well-established theoretical framework applicable to many 

chemical systems over a wide range of temperatures and pressures, they are not as widely 

adopted as their early promise might have suggested. This is strikingly illustrated by the 

simultaneous appearance in the literature of numerous, different (and potentially incompatible) 

Pitzer models alongside a proliferation of alternative theoretical approaches with inferior 

capabilities.   

 

To better understand this problem, the ability of the Pitzer equations to represent the 

physicochemical properties of aqueous solutions has been systematically investigated for 

exemplar electrolyte systems. Pitzer ion-interaction parameters have been calculated for selected 

systems by least-squares regression analysis of published solution data for activity coefficients, 

osmotic coefficients, relative enthalpies, heat capacities, volumes and densities to high 

temperatures and pressures. Although satisfactory fits can be achieved when the ranges of 

conditions are carefully chosen and when sufficient data are available to constrain the regression, 

the fits obtained tend otherwise to be unsatisfactory. The Pitzer equations do not cope well with 

gaps and other deficiencies in the regressed data. Profound difficulties, poorly recognized 

hitherto, can also arise because of variation in the sensitivity of the Pitzer functions to values for 

different physicochemical properties when these are combined. Given the dimensionality of 

numerous related thermodynamic properties, all changing as functions of composition, 
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temperature and pressure, these problems are difficult to detect, let alone address, especially in 

multicomponent systems. The growing practice of improving fits simply by adding basis 

functions (thereby increasing the number of adjustable parameters) should be depreciated 

because it increases the likelihood of error propagation, introduces subjectivity, makes 

independent verification difficult and has deleterious implications for both automated data 

processing and for consistency between thermodynamic models.  

 

1. INTRODUCTION 

 

Numerous theoretical frameworks for aqueous electrolyte solution modelling have been 

described in the literature, including some recent examples appearing in Afanas'ev (2011), 

Fraenkel (2011), Haghtalab et al. (2011), Hsieh and Lin (2011), Hu et al. (2011), Lamperski and 

Pluciennik (2011), Li et al. (2011), Partanen (2012), Sun and Dubessy (2012), Tian et al. (2012) 

and Xiao and Song (2011). Of these various approaches none has been more widely adopted than 

that of Pitzer (1973). This is because the Pitzer equations enable convenient calculation of a 

comprehensive suite of aqueous solution thermodynamic properties (Pitzer, 1991) with 

unmatched precision over wide ranges of temperature and pressure (Grenthe et al., 1997) for 

strong electrolytes and their mixtures. Ever since Harvie and Weare (1980) and Harvie et al. 

(1984) showed that the successive precipitation of salts from evaporating seawater could be 

predicted using the Pitzer formalism, such equations have often been adopted for aqueous 

geochemical and other modeling, being included in a number of software packages such as 

PHREEQC (Parkhurst and Appelo, 1999), EQ3/6 (Wolery, 1996), OLI Analyser (Reddy and 

Lewis, 2006) and The Geochemist's Workbench (Bethke, 1998). Some very large Pitzer models 
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have been developed for multicomponent solutions, including one for seawater containing 16 

major ionic components and a number of trace elements (Millero and Pierrot, 1998) and our 11-

component model for industrial Bayer liquors (concentrated alkaline aluminate solutions used in 

alumina refining) (Königsberger et al., 2005; Königsberger et al., 2011). The Pitzer framework is 

even being used in the development of SI-traceable chemical activity determination (Berdat et 

al., 2009), including suggestions for improving the definition of pH (Buck et al., 2002; Waters 

and Millero, 2013), with significant implications for the major multinational effort to assess the 

long-term risks of radioactive waste disposal (Kim et al., 2010; Baechler et al., 2012). These 

developments might give the impression that modelling of the thermodynamic properties of 

electrolyte solutions using the Pitzer equations has become routine. However, such an impression 

would be mistaken. 

 

Progress since the 1980s towards a comprehensive, integrated and predictive thermodynamic 

modelling capability has been limited. This reflects persistent deficiencies in theory. It has not 

yet been possible to couple in a satisfactory way 'specific ion interaction models' like those of 

Pitzer with chemical speciation calculations of chemically reactive systems, particularly in 

multicomponent mixtures with strong complex formation. New fundamental insights are needed 

to move forward: as Kunz and Neueder (2010) remarked, it has proved “easier to fly to the moon 

than to describe the free energy of even the simplest salt solutions beyond a concentration of 0.1 

M or so”. 

 

Some of the reasons why the thermodynamics of aqueous electrolyte solutions has remained 

intractable are well known: the strong departure of ionic solutions from ideality due to short- and 
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long-range electrostatic interactions (Grenthe et al., 1997, p. 327); the empirical nature of, and 

associated parameter correlation in, the extended Debye-Hückel modelling functions currently 

available (Marshall et al., 1995); and the need to rely on approximation methods for making 

temperature corrections to thermodynamic data (Puigdomenech et al., 1997). More subtle 

difficulties have also begun to receive attention. One is the combinatorial explosion of function 

parameters arising with multicomponent mixtures (Voigt, 2011), which is implicit in Brönsted’s 

specific ion interaction theory (Brönsted, 1922a; Brönsted, 1922b; Guggenheim, 1935) and 

strongly manifest in the Pitzer formalism. Others are the ongoing paucity of reliable 

experimental data available for function parameter regression (Voigt, 2011) and the prohibitive 

burden of critical data assessment and fitting (Archer, 1990). It nevertheless remains puzzling 

why it is so difficult to describe aqueous electrolyte solutions that are in general well-behaved, 

since almost all thermodynamic properties at T ≲ 573 K vary both smoothly and for the most 

part gradually (Pitzer, 1979). 

 

This paper describes a systematic investigation of the use of the Pitzer equations for modelling 

aqueous electrolyte solutions over wide ranges of composition, concentration, temperature and 

pressure. An attempt is made to understand the strengths and weaknesses of the Pitzer approach, 

to establish its limitations and to explore ways by which it might be more effectively applied. 

Data fitted include binary salt solutions (those containing one electrolyte + water) and ternary 

solutions (containing two electrolytes + water). The approach employed was as general as 

possible, covering data sets from widespread sources. Perhaps most importantly the approach is 

free from the subjective assessments that arise inevitably when modelling functions are being 

proposed or being applied to newly-measured experimental results. 
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2. THEORY 

 

The original Pitzer equations and their many subsequent variants have been described in detail 

elsewhere so only a very brief outline is presented here to provide the necessary background. 

 

For multicomponent electrolyte solutions the Pitzer equations are conveniently defined (Pitzer, 

1991) via an expression for the excess Gibbs energy (Eq. (1)): 

 

GE(wwRT) –1  =  –A (4I b–1) ln(1 + bI1/2) + 2 ∑ ∑  𝑎𝑐 mcma [Bca + (∑  𝑐 mczc) Cca]  

                                                                            + 2 ∑ ∑  𝑐′𝑐 mcmc [2 Φcc + ∑  a ma ψcca]  

                                                                            + 2 ∑ ∑  𝑎′𝑎 mama [2 Φaa + ∑  c mc ψcaa]          (1)                                                         

 

where R and T have their usual meanings, ww is the mass of the solvent (in kg), A is the Debye-

Hückel constant for osmotic coefficients (Fernández et al., 1997) (at T = 298.15 K, A = 0.3915 

kg1/2 mol–1/2), I is the stoichiometric molality-based ionic strength (I = 0.5  mizi
2) , mc and ma are 

the molalities of cations and anions respectively, zc is the algebraic charge of the cation, Cca, Φcc, 

Φaa, ψcca and ψcaa are ion-interaction coefficients described below, and the summations span all 

cations c < c and anions a < a. The constant b is temperature and pressure independent and is 

given the value 1.2 (kg mol–1)1/2 for all solutes. In Eq. (1), terms describing interactions 

involving neutral solutes are omitted (see Pitzer (1991) for the full equations).  

 



 

7 
 

The second virial coefficient Bca depends on ionic-strength (Eq. (2)), whereas the third virial 

coefficient Cca is independent of ionic strength. 

Bca  = (0)
ca + 2(1)

ca[1 – (1 + 1I
1/2) exp(–1I

1/2)] (1
2I)–1 

                                                              + 2(2)
ca[1 – (1 + 2I

1/2) exp(–2I
1/2)] (2

2I)–1            (2)                                    

 

In the original Pitzer equations, 1 and 2 are temperature- and pressure-independent theory-

based coefficients; 1 = 2.0 (kg mol-1)1/2 and 2 = 0 (kg mol-1)1/2 (i.e., (2)
ca is not needed)  unless 

both ions are divalent (when 1 = 1.4 (kg mol–1)1/2 and 2 = 12 (kg mol–1)1/2) or more highly 

charged (e.g., 1 = 2.0 (kg mol–1)1/2 and 2 = 50 (kg mol–1)1/2 for 3:2 electrolytes  (Pitzer, 1991)). 

Thus at fixed pressure and temperature, GE is expressed in terms of up to four adjustable 

parameters (0)
ca, (1)

ca, (2)
ca and Cca per binary electrolyte.  

 

Terms arising from interactions involving two (different) ions of the same charge are required for 

ternary mixtures of electrolyte solutions with either a common anion (Φcc, ψcca) or a common 

cation (Φaa, ψcaa). For unsymmetrical mixing, that is, when the charges on c and c (or a and a) 

differ, the theory requires that an electrostatic mixing term, Eθij, which is dependent only on the 

charges of the ions i and j, the ionic strength and on solvent properties (hence on temperature and 

pressure), appears in Φij, which is then given by Φij = θij + Eθij (Pitzer, 1991). Thus, at fixed 

pressure and temperature, GE is expressed in terms of (an extra) two adjustable parameters, θij 

and ψijk, per ternary electrolyte mixture. Interactions involving three ions of the same charge are 

neglected so, for multicomponent electrolyte mixtures, only adjustable Pitzer parameters for 

binary and ternary solutions need to be considered.  
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Expressions for other excess thermodynamic quantities can be derived from GE in a 

thermodynamically consistent manner (Pitzer, 1991). For example, the osmotic coefficient of the 

solvent, , and the activity coefficients of the solutes, γi, are obtained by appropriate partial 

differentiation with respect to composition. Apparent molar enthalpies, heat capacities, volumes 

and compressibilities are related to the first and second partial derivatives with respect to 

temperature and pressure. Since these differentiations are carried out only on the Debye-Hückel 

coefficient and the Pitzer parameters (but not on the temperature- and pressure-independent 

molalities and constants 1, 2 and b), the mathematical form of Eq. (1) is retained (Pitzer, 

1991). Owing to the improved performance of computers and evaluation software, the 

determination of the empirical parameters in the above equations is now increasingly facile. 

 

The pressure and temperature dependencies of Pitzer parameters are given by purely empirical 

functions such as Eq. (3). 

 

X(P, T)  = w1(P/P°) + w2(P/P°) T°/T + w3(P/P°) ln(T/T°) + w4(P/P°) T/T° + w5(P/P°) (T/T°)2  

                                                                    + w6(P/P°) T°/(TU – T) + w7(P/P°) T°/(T – TL)         (3) 

                                        

where T° is 1.0 K and P° is 1.0 MPa. Values of TU = 680 K and TL = 227 K have been found 

appropriate to achieve a good fit for NaCl(aq) in the range 273 < T /K < 573 (Pitzer et al., 1984). 

Depending on the data to be described by the model, the wi(P/P°) in Eq. (3) may either be simple 

constant coefficients or functions of pressure. For NaCl(aq) up to P = 100 MPa, power series up 

to the third order in P have been used (Pitzer et al., 1984), resulting in a total of 53 coefficients 

for Eq. (3). Similar Pitzer models have been published for other binary electrolyte systems. 
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The standard state partial molar volume 𝑉0 and heat capacity 𝐶𝑝
0 can have complex temperature 

dependences (Rogers and Pitzer, 1982; Archer, 1992; Archer and Carter, 2000). The numerical 

difficulties associated with these quantities can be reduced (Rogers and Pitzer, 1982) by re-

writing the equation for the corresponding apparent molar quantity of a binary solute to be 

relative to a non-zero reference molality (Archer and Carter, 2000) 

   𝜙𝑉 = [𝑉(𝑚𝑟) − 𝑣𝑤]𝑛𝑟
−1   + 𝜈|𝑧𝑀𝑧𝑋|𝐴𝑉(2𝑏−1)[ln(1 + 𝑏𝐼1 2⁄ ) − ln(1 + 𝑏𝐼𝑟

1 2⁄
)]

+  2𝜈𝑀𝜈𝑋𝑅𝑇[𝑚𝐵𝑀𝑋
𝑉 (𝐼) − 𝑚𝑟𝐵𝑀𝑋

𝑉 (𝐼𝑟) +  𝜈M𝑧𝑀(𝑚2 − 𝑚𝑟
2)𝐶𝑀𝑋

𝑉  ] 

where 𝑣𝑤 is the volume of 1 kg of water at the experimental pressure and temperature, 𝑉(𝑚𝑟) is 

the volume of a reference solution containing 1 kg of water and 𝑛𝑟 moles of solute, 𝑚𝑟 is the 

molality of that solution and 𝐵𝑀𝑋
𝑉  and 𝐶𝑀𝑋

𝑉  are the derivatives with respect to pressure of 𝐵𝑀𝑋 

and 𝐶𝑀𝑋. The temperature and pressure dependence of 𝑉(𝑚𝑟) is represented in this work by the 

function:  

𝑉(𝑚𝑟)𝑛𝑟
−1 = 𝑓𝑣,1 + 𝑓𝑣,2(𝑇 𝑇∘⁄ ) + 𝑓𝑣,3(𝑇 𝑇∘⁄ )2 + 𝑓𝑣,4(𝑇 𝑇∘⁄ )3 + (𝑃 𝑃∘⁄ )(𝑓𝑣,5 + 𝑓𝑣,6(𝑇 𝑇∘⁄ )

+ 𝑓𝑣,7(𝑇 𝑇∘⁄ )2) + (𝑃 𝑃∘⁄ )2(𝑓𝑣,8 + 𝑓𝑣,9(𝑇 𝑇∘⁄ )) 

 

As described by Archer (1992), the functional form of 𝐶𝑝(𝑚𝑟)/𝑛𝑟 can be made dependent on 

temperature only: 

𝐶𝑝(𝑚𝑟)𝑛𝑟
−1 =  𝑓𝑐,1 + 𝑓𝑐,2(𝑇 𝑇∘⁄ ) + 𝑓𝑐,3(𝑇 𝑇∘⁄ )2 + 𝑓𝑐,4𝑇∘/(𝑇𝑈 − 𝑇) + 𝑓𝑐,5𝑇∘/𝑇 +  𝑓𝑐,6 ln(𝑇 𝑇∘⁄ ) 

 

since its pressure dependence is contained within the expression for 𝑉(𝑚𝑟)𝑛𝑟
−1 where, here, 𝑓𝑣,𝑛 

and 𝑓𝑐,𝑛 are the optimised coefficients.  
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3. METHODS 

 

As summarised in Section 1, many limitations of the Pitzer equations are well known in the 

literature. This paper focuses on four ‘Case Studies’ that, taken together, provide insights into 

less well-recognised but critical difficulties with the Pitzer approach. The electrolytes NaCl(aq), 

MgCl2(aq) and CaCl2(aq) were selected for this purpose because: (a) they have been extensively 

quantified experimentally, particularly under non-ambient conditions; (b) they have relatively 

high solubilities; and (c) they feature prominently in natural brine solutions. Not surprisingly 

these systems have also been the subject of numerous previous Pitzer-based characterizations 

(Table 1). 

 

Most of the present work was performed using the JESS (Joint Expert Speciation System) 

software package (May and Murray, 1991; May and Murray, 2001; May et al., 2010; Rowland 

and May, 2010; May et al., 2011; Rowland and May, 2012; Rowland and May, 2013). The JESS 

physicochemical property database (FIZ) (May et al., 2010) currently contains more than 

400,000 data entries, mostly for electrolytes (ca. 300 binary and >200 ternary systems). This 

database provides sufficient coverage to explore the modelling of physicochemical properties in 

systematic ways (May et al., 2010; Rowland and May, 2013) not previously practicable. Most 

importantly for meaningful analysis of modelling functions, it is necessary to have systems, such 

as NaCl(aq), CaCl2(aq) and MgCl2(aq), that have been measured sufficiently often by 

independent investigators to permit  a realistic assessment of experimental errors (Rowland and 

May, 2013).  
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Table 1  Literature sources of multidimensional Pitzer models for binary solutions NaCl(aq), 

MgCl2(aq) and CaCl2(aq)   

 

Ref. T (K) P (MPa) mmax (mol kg–1) 

NaCl(aq) 

Rogers and Pitzer (1982) 273—573 0.1—100 5.5 

Pitzer et al. (1984) 273—573 0.1—100 6 

Archer (1992) a 250—600 0.1—100 6 

Archer and Carter (2000) a 250—600 0.1—100 6 

MgCl2(aq) 

Phutela et al. (1987) 273—473 Psat 
b 1 

Holmes et al. (1997) a 273—523 0.1—40 5.9 

Wang et al. (1998) a 240—627 0.1—100 25 

CaCl2(aq) 

Phutela and Pitzer (1983) 298—473 Psat 4 

Ananthaswamy and Atkinson (1985) a 273—373 0.1 9 

Phutela et al. (1987) 273—473 Psat 1 

Holmes et al. (1997) a 270—526 0.1—40 4.6 

Gruszkiewicz and Simonson (2005) a  273—573 Psat msat 

a Using various extended forms of the Pitzer equations; b Below 373.15 K Psat = 0.1 MPa, else 

saturation pressure 

 

 In Case Studies A and B, the full range of relevant physicochemical property data for the three 

selected systems was extracted from the relevant JESS database and processed using the standard 



 

12 
 

JESS optimization and simulation facilities available for implementation of the Pitzer equations 

(May et al., 2010). The overall strategy adopted for critical data selection and processing was 

similar to that described in our analysis of aqueous binary electrolyte solutions at P = 0.1 MPa 

and T = 298.15 K (May et al., 2011). Singular value decomposition (May et al., 2010), a 

computational technique that avoids numerical ill-conditioning and minimizes the impacts of 

correlation (Press et al., 1992), has again been applied within the JESS calculations. 

 

With Case Studies C and D, all thermodynamic properties were calculated using the Gibbs-

energy minimizer incorporated into the ChemSage/FactSage/ChemApp software family 

(Eriksson and Hack, 1990; Petersen and Hack, 2007; Eriksson and Königsberger, 2008; Bale et 

al., 2009). ChemSage (Eriksson and Hack, 1990). ChemSage requires tailor-made data files 

containing, in the present case, coefficients for temperature functions of Pitzer parameters and 

standard Gibbs energies (Eriksson and Hack, 1990). These coefficients were either taken directly 

from the literature or optimised with respect to the relevant experimental data (Königsberger and 

Eriksson, 1995).  

 

4. RESULTS 

 

4.1. Case Study A: General regression of reliable literature data at non-ambient conditions  

 

This Case Study confirms that the Pitzer equations in their standard form can accurately 

describe the physicochemical properties of the aqueous solutions of numerous binary 

electrolytes over wide ranges of conditions when the fitted data are reasonably consistent. 



 

13 
 

 

Optimizations based on the form of the Pitzer equations outlined in Section 2 were performed for 

NaCl(aq), MgCl2(aq) and CaCl2(aq). Suitable sets of conditions, given in Table 2, were 

determined following a preliminary survey. The upper temperature limit, T  523 K, was 

imposed on MgCl2(aq) and CaCl2(aq) because of well-known difficulties at higher temperatures 

(Holmes et al., 1994; Holmes and Mesmer, 1996). Several factors were considered in choosing 

suitable upper concentration limits, including the number of data available and the best-fitting 

concentration limit at ambient temperature (May et al., 2011). However, since such choices are 

inherently subjective, a concentration of 6 mol kg–1 was adopted for uniformity.  

 

Table 2  Chosen ranges for JESS-derived multidimensional Pitzer modelsa  

System T (K) P (MPa) mmax (mol kg–1) Nd NP 

NaCl(aq) 273—573 0.1—100 6 70283 63 

MgCl2(aq) 273—523 0.1—100 6 4748 59 

CaCl2(aq) 273—523 0.1—68 6 6033 57 

a Nd = number of data points; NP = number of optimized coefficients. 

 

The standard deviations between the experimental data and the models are given in Table 3. 

Standard deviations for each property are given separately for data up to and including T  

373.15 K and for data at T > 373.15 K. 

 

Table 3  Standard deviations of FIZ data from the JESS Pitzer models  

System Conditions ln 𝛾 𝜙  𝜙𝐿 a Δ𝐻𝑑𝑖𝑙 
a,b  𝜙𝐶𝑝 c  𝜙𝑉 d 
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NaCl(aq) T  373.15 K  0.0019 0.0025 0.053 0.032 4.1 0.21 

 T > 373.15 K 0.005 0.0027 1.2 0.25 7.8 1.3 

MgCl2(aq) T  373.15 K  0.013 0.009 0.58 0.17 9.5 0.52 

 T > 373.15 K 0.026 0.014 0.66 0.27 15 0.97 

CaCl2(aq) T  373.15 K  0.015 0.015 0.34 0.094 12 0.49 

 T > 373.15 K  0.027 0.013 0.99 0.55 33 0.79 

a Units: kJ mol–1; b Apparent molar enthalpy of dilution; c Units: J K–1 mol–1; d Units: cm3 mol–1  

 

The representation of the thermodynamic properties of NaCl(aq) by the Pitzer equations over the 

given conditions was highly satisfactory. In particular, the activity and osmotic coefficients were 

well-correlated over the entire temperature range (Fig. 1). The apparent molar relative enthalpy 

and enthalpy of dilution were also accurately characterised by the model, although the standard 

deviation of the apparent molar relative enthalpy data was anomalously large. This was primarily 

due to inclusion of the simulated results of Busey et al. (1984) at T = 573.15 K which differ from 

the present model by 6 kJ mol–1 at 𝑚 = 5 mol kg–1. Accordingly, these data were assigned 

minimal weight in the optimization. The volumetric properties were also described with good 

accuracy, with standard deviations of 0.22 cm3 mol–1 in V for T  373.15 K and 1.3 cm3 mol–1 at 

T > 373.15 K. The standard deviation of V at higher temperatures is perhaps larger than 

expected but is attributable to the inclusion of data from numerous sources that differ by up to 8 

cm3 mol–1 or more (Table 4).  

 

Table 4  Comparison between different literature studies for apparent molar volumes of 

NaCl(aq) at 𝑚 = 0.5 mol kg–1, 𝑃 = 20 MPa at T  573 K  
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Ref.  𝜙𝑉 (cm3 mol–1) 

Grant-Taylor (1981) –41.6 

Rogers and Pitzer (1982) –34.4 

Pitzer et al. (1984) –34.4 

Majer et al. (1988) –40.8 

Archer (1992) –39.9 

 

Some systematic deviations in the apparent molar heat capacity are also evident (Fig. 2), but only 

at high pressures where there are no supporting experimental (as opposed to simulated) data. 

 

 

Fig. 1. (a) Activity coefficients and (b) osmotic coefficients of NaCl(aq) as a function of 

concentration at: T /K  298 (squares), 373 (diamonds), 473 (pluses), 523 (triangles) and 573 

(circles). Pressure is the greater of saturation vapour pressure or 0.1 MPa. Main data sources: 

Pitzer et al. (1984), Busey et al. (1984) and Archer (1992). Lines from the JESS Pitzer model. 
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Fig. 2  Apparent molar heat capacity of NaCl(aq) as a function of concentration at pressures of: 

(a) 80 MPa and (b) 100 MPa, with T /K = 273.15 (thin lines) and 573.15 (thick lines). Dashed 

lines are from the correlation of Archer (1992). Solid lines are from the JESS Pitzer model. 

Points are from Puchkov et al. (1976) for T = 573.15 K (extrapolated from saturation pressure to 

approximately 100 MPa) and were not included in Archer's optimization, nor that of this work. 

 

The MgCl2(aq) activity and osmotic coefficients are described with impressive accuracy (Figs. 3 

and 4). The standard deviations of the fit to V were 0.52 cm3 mol–1 for T  373.15 K, and 0.97 

cm3 mol–1 for T > 373.15 K, while those for Cp were 9.5 J (K mol)–1 and 15 J (K mol)–1, 

respectively. Examples of the Cp fits are shown in Fig. 5. 
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Fig. 3  Activity coefficients of MgCl2(aq) as a function of concentration at T /K  298 (squares), 

373 (circles), 423 (diamonds) and 523 (triangles). Main data sources: Goldberg and Nuttall 

(1978), Wang et al. (1998) and  Christov (2009b). Lines from the JESS Pitzer model. 

 

Fig. 4. Osmotic coefficients of MgCl2(aq) as a function of concentration at T /K  298 (squares), 

383 (diamonds), 413 (pluses), 443 (triangles) and 498 (circles). Main data sources: Goldberg and 

Nuttall (1978), Rard and Miller (1981), Holmes and Mesmer (1996) and Holmes et al. (1997). 

Lines from the JESS Pitzer model. 
 

 

Fig. 5  Apparent molar heat capacities of MgCl2(aq) as a function of concentration at: (a) T = 

298.15 K; (b) T = 373.15 K. Main data sources: Perron et al. (1974, 1981), Saluja and LeBlanc 

(1987), Saluja et al. (1995), Holmes et al. (1997) and Call et al. (2000). Lines from the JESS 

Pitzer model. 
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For CaCl2(aq) the activity and osmotic coefficients were also well-correlated by the standard 

Pitzer equations at m  6 mol kg–1, albeit with some deviations in  at the highest concentrations 

(Fig. 6). While these differences exceed the likely experimental uncertainties, they are small and 

it is difficult to know their true significance. The standard deviations of the fit to V are 0.5 cm3 

mol–1 for T  373.15 K and 0.8 cm3 mol–1 for T > 373.15 K, which is satisfactory. Those for Cp 

are also reasonable, being 12 J (K mol)–1 for T  373.15 K and 33 J (K mol)–1 for T > 373.15 K.  

 

Fig. 6. Osmotic coefficients of CaCl2(aq) as a function of concentration at: T /K  298 (squares), 

373 (diamonds), 443 (pluses), 473 (triangles) and 498 (circles). Main data sources: Rard and 

Spedding (1977), Goldberg and Nuttall (1978), Ananthaswamy and Atkinson (1985), Holmes et 

al. (1994) and Gruszkiewicz and Simonson (2005). 
 

 

4.2. Case Study B: General regression of inconsistent literature data at non-ambient 

conditions 

This Case Study demonstrates that various severe problems can arise when Pitzer-fitted data sets 

are incomplete and/or thermodynamically inconsistent. The resulting numerical pathologies are 

not always easily detectable and, in particular, will not necessarily show up in the fitted 
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The MgCl2(aq) system was selected for this Case Study as it is known to be reliably represented 

at T  523 K using the standard Pitzer equations (Case Study A above). However, additional data 

are available at 524  T /K  573.5 (Table 5). 

 

Table 5  Data sources for modelling the properties of MgCl2(aq) at T > 523 K 

Reference Property T (K) P (MPa) m (mol kg-1) # data 

White et al. (1988) ϕCp 549.0 10.1—17.9 0.03—2.26 46 

 ϕCp 573.5 17.9 0.03—2.26 23 

Holmes and Mesmer (1996) ϕ 524 Psat 0.42—3.95 21 

Obšil et al. (1997) ρ–ρw 572.6 10.4—30.3 0.03—3.04 28 

Wang et al. (1998) γ 573 Psat 0.001—6 32 

 ϕ 573 Psat 0.001—6 32 

 ϕV 573 10—30 0.001—3 72 

 

 

Pitzer parameters were thus determined for MgCl2(aq) over a range of conditions spanning P = 

(0.1 to 100) MPa, T = (273 to 573) K and m = (0 to 6) mol kg–1. The set of basis functions was 

the same as that used above for the optimization to T = 523 K. As a result, an increase in the 

value of the objective function relative to Case Study A was observed. The standard deviations 

for the different physicochemical properties are given in Table 6. 
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Table 6  Standard deviations of FIZ data for MgCl2(aq) from the Pitzer model optimised to T = 

573 K. Numbers in bold are significantly greater than corresponding values in Table 3. 

 

Conditions ln 𝛾 𝜙  𝜙𝐿 a Δ𝐻𝑑𝑖𝑙 
a  𝜙𝐶𝑝 b  𝜙𝑉 c 

T  373.15 K  0.013 0.009 0.77 0.26 19 0.63 

T > 373.15 K  0.026 0.016 0.92 0.26 57 1.7 

a Units: kJ mol–1; b Units: J K–1 mol–1; c Units: cm3 mol–1  

 

Although the high-temperature data were poorly represented (Table 6), for example with 

spurious minimum in Cp(T) (Fig. 7), more striking were the large deviations in Cp(m) arising at 

low temperatures (Fig. 8, dashed lines). The effect in Fig. 7 illustrates the critical dependence of 

the fit on the weights given to data for a particular property and for different ranges of 

conditions, neither of which can be established objectively.  

 

 

Fig. 7. Apparent molar heat capacity of MgCl2(aq) as a function of temperature at 𝑃  17.9 MPa 

and 𝑚 = 0.03 mol kg–1. Data sources: White et al. (1988) (triangles) and Wang et al. (1998) 

(squares). 
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Moreover, under certain conditions of temperature and pressure, the slope of Cp(m) is negative 

in dilute solutions but reverses sign to approach the theoretical Debye-Hückel limiting slope. 

This non-physical behaviour results directly from attempting to constrain a large number of 

empirical parameters using incoherent (high-temperature) data. Detecting these kinds of non-

physical trends requires close human inspection since they might occur in regions of the 

multidimensional space where no data are available, in which case there would be no significant 

adverse effect on the weighted sum of squared residuals. 

 

A noticeable improvement in the correlation of Cp(m) at near-ambient temperatures (Fig. 8, 

solid lines) was achieved by changing the weights of the high-temperature data. However, 

weighting inevitably involves some degree of subjectivity and the difference between the two 

models was insignificant over the whole multidimensional space. 

 

 

Fig. 8. Apparent molar heat capacity for MgCl2(aq) as a function of concentration at: (a) P = 0.1 

MPa and T = 298.15 K; (b) P = 0.35 MPa and T = 278.15 K. Main data sources: Perron et al. 

(1974, 1981), Holmes et al. (1997), Call et al. (2000). Curves show models optimised over the 
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range P = (0.1 to 100) MPa, T = (273 to 573) K, m = (0 to 6) mol kg –1. Normal FIZ weights for 

all data (dashed line); reduced weights on data at T  523 K (solid line). 
 

To understand why the Pitzer model functions can fail so badly, it is helpful to remember that 

numerical problems of this kind have been observed before in a study confined to ambient 

conditions (May et al., 2010). The consequences of relatively small experimental errors can be 

dramatic even in two dimensions; a striking example is given in the Appendix. Obviously, there 

is an increased likelihood of such pathological effects occurring in multicomponent space, and 

greater difficulty with detecting them. To the best of our knowledge this serious limitation of the 

Pitzer equations has not been previously identified in the literature.     

 

4.3. Case Study C: General regression of disparate literature data in binary systems 

This Case Study shows that the Pitzer equations are inherently limited in their ability to 

distinguish between the merits of disparate sets of experimental data. Consequently, critical data 

evaluations become over-dependent on the subjective judgement of the assessor and full 

automation of the modelling process to achieve greater objectivity is precluded.  

 

Pitzer parameters for activity and osmotic coefficients of MgCl2(aq) from several sources, valid 

under ambient conditions, are given in Table 6. Solubility products for the formation of 

MgCl2•6H2O(cr) at 𝑚 = 5.81 mol kg–1 (Rard and Miller, 1981) have been calculated from each 

set of parameters. The critically evaluated solubility product of Wagman et al. (1982) is also 

included for comparison. 
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Table 6  Published Pitzer parameters for activity and osmotic coefficients of MgCl2(aq) at T = 

298.15 K. The solubility product, ln 𝐾𝑠𝑝(MgCl2•6H2O(cr)), at 𝑚 = 5.81 mol kg–1 is also shown.  

 

Ref. mmax 𝛽(0) 𝛽(1) 𝐶𝜙 ln 𝐾𝑠𝑝 

Pitzer and Mayorga (1973) 4.5 0.3524 1.682 0.00519 10.38 

Rard and Miller (1981) 4.0 0.3509 1.651 0.00651 10.53 

Kim and Frederick (1988) 5.75 0.3557 1.617 0.00474 10.37 

Holmes et al. (1997) 5.9 0.3559 1.608 0.00459 10.34 

Christov (2009b) msat 0.3619 1.581 0.00238 10.15 

This work 5.9 0.3553 1.644 0.00510 10.43 

Wagman et al. (1982)     10.24 

 

 

Each of the parameterizations in the literature is based upon different datasets and methods. 

Pitzer and Mayorga (1973) based their optimization on the critically-evaluated data of Robinson 

and Stokes (1965), while Kim and Frederick's (1988) parameterization is based on the critical 

evaluation of Goldberg and Nuttall (1978). Other workers used various weighting schemes to 

reconcile the numerous sources of activity and osmotic coefficient data for optimization. 

Christov (2009a) appears to be the only worker to have relied so heavily on solubility data to 

parameterize his model for MgCl2(aq), which may explain his rather different values for 𝐶𝜙 and 

ln 𝐾𝑠𝑝. The different sets of data chosen and the different optimization strategies employed 

means that, for example, osmotic coefficients calculated using alternative parameter sets display 

large deviations from one another (Fig. 9). For example, Christov's (2009a) model deviates 

considerably from the experimental data of Rard and Miller (1981) at high concentrations. The 
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remaining models differ by up to 0.02 in  in their region of applicability. This is much larger 

than the uncertainty of 0.1—0.2% attributed to Rard and Miller's (1981) data. 

 

 

 

Fig. 9. Deviations of the osmotic coefficient for MgCl2(aq) between various calculations and the 

experimental values of Rard and Miller (1981) as a function of concentration at T = 298.15 K, 

showing critically-evaluated experimental values of Robinson and Stokes (1970) (thick solid 

line) and different Pitzer models: Pitzer (1973) (short dash-dot lines); Rard and Miller (1981) 

(dashed); Kim and Frederick (1988) (dash-dot-dot); Holmes et al. (1997) (long dash-dot); 

Christov (2009a) (dotted); this work (thin solid). 

 

Some immediate observations present themselves regarding the nature of Pitzer equations. First, 

it is evident that the function provides no real assistance in identifying the better of disparate 

datasets – different experts have optimized different datasets without issue. Second, the 

characteristic, S-shaped distribution of all residual sets shown in Fig. 9 is indicative of some sort 

of incorrect (probably over-fitted) model behaviour, or of systematic errors in the data, or both.  

At the same time, it is worth noting that while the usual three Pitzer parameters suffice to fit the 

data within ±0.01 in   over the entire range of experimental data (Fig. 9, this work), extended 

Pitzer models involving up to six ion-interaction parameters(!) have been employed (Pitzer et al., 
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1999) to reduce the deviations to less than ±0.005 in 𝜙. Such extensions are rarely justified 

(NaCl(aq) is a possible exception) given the differences between independent measurements but, 

worse, they conjure up a picture of agreement between observed data and model calculations 

which depends upon the data selected and which is subjective and non-trivial to verify 

independently (Rowland and May, 2013). 

 

4.4. Case Study D: General regression of disparate literature data for mixtures 

This Case Study shows that differences among the data sets and models are exacerbated when 

mixtures are considered. Recognising aberrant behaviour is more difficult and, consequently, 

robust thermodynamic modelling of multicomponent electrolyte solutions as an ambition  

remains remote.  

 

Fig. 10a displays the mean activity coefficients of NaCl(aq) in mixtures of NaCl(aq) + 

MgCl2(aq) at a constant stoichiometric ionic strength of I = 6 mol kg–1 (in other words for 

mixtures of m = 6 mol kg–1 NaCl(aq) and m = 2 mol kg–1 MgCl2(aq)). The points at yMgCl2
 = 1, 

where yMgCl2
 = 3m MgCl2

/(3m MgCl2 + m NaCl) is the ionic strength fraction of MgCl2 in the mixtures, 

therefore correspond to t
NaCl, the trace activity coefficient of NaCl(aq) in m = 2 mol kg–1 

MgCl2(aq). These values, obtained from various models, vary within a 5 % range in t
NaCl. The 

variation of t
MgCl2

 in m = 6 mol kg–1 NaCl(aq) is even larger (Fig. 10b). 
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Fig. 10  Mean activity coefficients of (a) NaCl(aq); and (b) MgCl2(aq), as a function of yMgCl2
, the 

ionic strength fraction of MgCl2(aq) in NaCl(aq) + MgCl2(aq) mixtures, at I = 6 mol kg–1 and t = 

298.15 K. Potentiometric results from Lanier (1965) (filled symbols). Pitzer models: Pitzer and 

Mayorga (1973) and Pitzer (1975) (short dash-dot lines); Rard and Miller (1987) (solid); Holmes 

et al. (1997) (long dash-dot). Harned's rule (dashed lines). McKay-Perring (Platford, 1968) 

(squares), Scatchard (Platford, 1968) (circles), Pitzer ( =  = 0) (Rard and Miller, 1987) 

(triangles), Scatchard (Rard and Miller, 1987) (crosses). 
 

The Pitzer model for NaCl(aq) + MgCl2(aq) mixtures (with non-zero  and  terms) reported by 

Rard and Miller (1981, 1987) is distinctly different from the other models, including Rard and 

Miller’s own calculations using Pitzer ( =  = 0) and Scatchard models (Rard and Miller, 

1987), although it is in reasonable agreement with Lanier’s (1965) potentiometric data for NaCl 

On the other hand, Platford’s isopiestic data for NaCl(aq) + MgCl2(aq) mixtures (Platford, 1968) 

appear to be inconsistent with those of Rard and Miller. It is unclear why Platford’s 

parameterization of the Scatchard model (using his data) yields results that are close to the Rard 

and Miller values for NaCl but not those for MgCl2
. Essentially opposite behaviour is observed for 

the Harned-rule model of Wu et al. (1968), which is close to Rard and Miller’s (1987) prediction 

for MgCl2
 but not for NaCl. 
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Activity coefficients derived from NaCl(s) solubility data from various sources show an even 

larger scatter (Fig. 11) than the differences among the various Pitzer models based on osmotic 

coefficients. Such data are therefore, at least for this system, hardly suitable for the optimization 

of mixing parameters.  

 

 

Fig. 11. Mean activity coefficient of NaCl(aq) at NaCl(s) saturation in solutions of MgCl2(aq) at 

T = 298.15 K as a function of the MgCl2(aq) molality. Experimental data: Kurnakov and 

Zemcuzny (1924) (circles); Keitel (1923) (triangles); Takegami (1921) (squares). Pitzer models: 

Pabalan and Pitzer (1987) (dotted line); Rard and Miller (1987) (solid); Holmes et al. (1997) 

(dash-dot).  
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5. DISCUSSION 

 

While recognising the significant advances that had taken place in semi-empirical 

(‘engineering’) models for electrolyte solution properties since the mid-1980s, Loehe and 

Donohue (1997) pleaded for “a cessation of what has become the practice of promoting an 

equation’s strengths without a discussion of its limitations”. Regarding the strengths of the Pitzer 

equations specifically, Fernández-Prini et al. (1992, p. 103) give a thorough account of the 

framework's fundamental origins and subsequent development. In essence, Pitzer recognised the 

correctness of the Debye-Hückel screened potential concept and linearized the ion pair 

distribution function. The resulting equations, linear with respect to all adjustable parameters, 

offer considerable innate benefits including ionic additivity of parameters and a natural extension 

to multicomponent systems. Issues arising from the non-linear nature of an adjustable parameter 

in the denominator of the Debye-Hückel term, particularly regarding thermodynamic 

inconsistency in modelling electrolyte mixtures (Robinson and Stokes, 1970, p. 435), are thus 

bypassed. On the other hand, it should be remembered that the extended Debye-Hückel theory is 

innately inconsistent (Fernández-Prini et al., 1992, p. 103) in respect of both electroneutrality 

requirements and the second  moment condition. It follows that thermodynamic ‘purity’ in any 

model based upon the Debye-Hückel theory is something of a chimera. Nonetheless, as shown in 

Case Study A, eminently satisfactory fits can be achieved using the Pitzer equations over 

restricted ranges of conditions when there are sufficient numbers of coherent data. Good 

agreement with experimental data can often be achieved up to concentrations of about 6 mol.kg–1 

and even higher, by sacrificing accuracy in the more dilute range (Prausnitz et al., 1999, p. 546).   
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A key advantage of the Pitzer equations is their ability to describe the variation of the excess 

thermodynamic functions over wide ranges of composition, temperature and pressure in a self-

consistent manner, with the quantities being related exactly in accord with the axiomatic 

functions of thermodynamics. Specifically, this means that the temperature dependence of the 

(excess) Gibbs energy must be consistent with independently measured (excess) enthalpy and 

heat capacity; the pressure dependence of G (or GE) must be consistent with observed volume 

and compressibility changes, and so on. Unlike individual property functions which are 

combined arbitrarily (Loehe and Donohue, 1997), any Pitzer model with a given parameter set is 

inherently thermodynamically consistent (Pitzer, 1984) because all calculated solution properties 

derive from the same basic equation for the excess Gibbs energy (Eq. (1)). This consistency has 

been used, for instance, to extend such models to high temperatures and pressures by employing 

heat capacity and density data (Pitzer, 1986; Pabalan and Pitzer, 1987; Archer, 1992; 

Königsberger et al., 2009; Schrödle et al., 2010). However, the algebraic flexibility of the Pitzer 

equations that allows them to follow physicochemical property changes so closely is, at the same 

time, the reason for their basic weakness. Since the temperature and pressure dependences of the 

Pitzer equations are entirely empirical, the presence of incoherent data in the parameter 

optimization can compromise the fit to other data either under different conditions or for 

different properties (Case Study B (this work), Pitzer et al. (1984) and Rard and Archer (1995)). 

Empiricism was also found necessary by Pitzer in respect of the ionic strength dependence of Bca 

(Eq. 2). All of the problems found in the present case studies can ultimately be traced back to 

empirical (over-)flexibility. 
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The Pitzer functions thus perform badly when dealing with data which, because of poorly-judged 

weighting, or gaps, or inaccuracies, do not constrain the empirical functions tightly enough. The 

Appendix provides a specific instance involving activity coefficients; similarly, in a previous 

investigation of binary electrolyte solutions at P = 0.1 MPa and T = 298.15 K (May et al., 2011) 

it was found that the extrapolation of Cp and V to infinite dilution was, for practical purposes, 

not sufficiently constrained by the Debye-Hückel behaviour embedded in the Pitzer equations (at 

low concentrations) to determine the standard partial molar quantities Cp
0 and V0. This is due 

directly to the empirical terms in these (derivative) equations, which even allow a reversal of 

function slope (e.g., Fig. 8) at concentrations as low as m = 10–4 mol kg–1. It is in contrast to the 

fundamentally sound behaviour of, say, the Redlich-Rosenfeld-Meyer equation (Redlich and 

Meyer, 1964), which has fewer (and therefore better behaved) parameters. Given that the 

experimental uncertainty of apparent/partial molar quantities increases very rapidly with 

decreasing concentration, the present observations belie the number of significant figures 

reported for Cp
0 and V0 from the Pitzer fits of measured data.  Typical examples of overly-

optimistic precision appear in Krumgalz et al. (1995, 1996a, 1996b, 2000), where V0 values are 

given to three decimal places. The excessive flexibility of the Pitzer equations, which is 

exacerbated by the facile introduction of purely empirical extensions, inevitably promotes 

chaotic effects and thus impedes development in the longer term of coherent and robust models. 

The growing practice of improving fits simply by adding basis functions (thereby increasing the 

number of adjustable parameters) should therefore be depreciated. 

 

As is evident in the present case studies, profound difficulties can arise in the use of Pitzer 

functions because of variation in the sensitivity of those functions to values of different 
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physicochemical properties. These have been poorly recognised hitherto and do not seem 

amenable to any straightforward solution. For example, the sequence of published parameters 

(Case Study C) for MgCl2(aq) seems to reflect to an uncomfortable extent individual assessments 

of the available data. While personal judgements are unavoidable in any critical assessment of 

experimental measurements, confidence in geochemical models depends on a rational basis for 

the weighting of data and on collective, independent and open processes of review and selection, 

leading to a general consensus. 

 

With regard to ternary Pitzer parameters, numerous workers have followed the advice of Pabalan 

and Pitzer (1991): “because the terms which include  … involve the second power of molality, 

this quantity is best determined by measurements at the highest concentration, i.e., in saturated 

solutions. Hence, some of the best values of  for many electrolyte mixtures come from 

solubility data”. There has thus been a tendency to fit Pitzer mixing parameters exclusively to 

solubility data. In doing so, the data have frequently been taken from just one source (usually 

that of the authors of the particular study) and the goodness of fit to those data taken as proof of 

the model’s predictive capability (Li et al, 2006; Li et al., 2010; Yang and Li, 2010). Given the 

real uncertainties in solubility measurements (Hefter and Tomkins, 2003) it is completely 

unsatisfactory to assess the quality of a model in such a self-referencing manner. Meinrath and 

colleagues (Meinrath, 2002; Spitzer et al., 2011) claim, with good justification, that many mixing 

interactions in electrolyte solutions are not statistically significant. While some researchers 

contest this view, there can be little doubt that the experimental uncertainties are considerably 

greater than are commonly assumed. Distinguishing real mixing interactions from systematic 
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experimental errors remains a profound challenge. Unfortunately, greater rigour is generally 

precluded by a lack of sufficient high-quality independently-confirmed experimental data.  

 

A further important and general limitation of the Pitzer equations is that data from different 

databases cannot easily be combined or interchanged in a thermodynamically consistent way. 

The principles conferring thermodynamic consistency described above have a corollary that is 

often overlooked: Pitzer equations parameterized over different ranges of conditions, or using 

different data sets, or with different basis functions, are inherently inconsistent and, having more 

empirical parameters, they are worse affected than simpler theoretical frameworks.  For example, 

this issue affects the recent Pitzer model for seawater by Waters and Millero (2013) who apply 

inconsistently-determined parameters without comment. Numerous ‘extended’ Pitzer equations, 

employing up to nine (cf. Pitzer’s original 3) ion-interaction parameters (Pitzer et al., 1999) have 

been proposed for particular binary systems at a given temperature. In addition, some of the 

fixed parameters proposed by Pitzer (1991) have been adjusted by some researchers  to achieve 

better fits to experimental data, e.g., αi in the ionic-strength dependent terms, cf. Eq. (2) (Holmes 

and Mesmer, 1996). Rard and Wijesinghe (2003, 2008) and Wijesinghe and Rard (2005) 

developed formulae for converting parameters of certain extended Pitzer models to those of the 

standard Pitzer model (Eq. (1)) but found that the latter only worked satisfactorily when the αi 

parameters in the ionic-strength dependent terms of the second virial coefficient were optimised.  

 

Another form of inconsistency between Pitzer models occurs because there is no fundamental 

(theory-based) temperature or pressure dependence of Pitzer parameters. Hence, a large number 

of different functions have been described in the literature (Eq. (3) is a single instance). For 

example, isothermal fits of Cp and V for NaOH(aq) and its mixtures with NaAl(OH)4(aq), 
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measured to T = 573.15 K at P = 10.0 MPa, have been performed recently (Hnedkovsky et al., 

2007; Schrödle et al., 2008; Hnedkovsky et al., 2010; Schrödle et al., 2010). When these results 

were fitted to temperature functions, error propagation led to model uncertainties which 

significantly exceeded the experimental precision of the measured data. This problem could only 

be addressed by using a multiple-fit procedure in which the standard molar quantities were fixed 

to the exact values obtained from their temperature functions. These observations bear on both 

the difficulty of determining meaningful parameter values in the Pitzer theoretical framework 

(van Gaans, 1991) and the more general assertion that temperature dependence of 

thermodynamic quantities cannot be accurately characterised by analytical functions, such as 

polynomials (Wood, 1976). 

 

When the components of an electrolyte solution include both multiple cations and multiple 

anions, the number of required parameters increases very rapidly (Voigt, 2011). It is thus self-

evidently difficult and laborious to construct large Pitzer models for multicomponent mixtures 

for non-ambient conditions without depending on subsets of data and/or parameters that are 

incompatible with one another. The enormity of the task of checking large multicomponent 

Pitzer models to ensure that they behave realistically over the whole multidimensional space of 

compositions, temperature and pressure is clear from Case Study D and has serious implications. 

For example, the popular Harvie-Møller-Weare (1984) seawater model, which is widely 

implemented in codes used by the geochemical community, was based on incorrect experimental 

data for gypsum solubilities in magnesium sulfate solutions (Marion and Farron, 1999). This led 

to long-undetected incorrect solubility predictions for multicomponent solutions and required 

updating to be consistent with more recent experimental results (Voigt, 2011). 
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6. CONCLUSIONS 

 

Many of the issues described in this paper could, of course, be overcome by additional and more 

accurate experimental data. The need for good physicochemical property models is nonetheless 

assured by the many geochemical systems of interest and the wide range of conditions that still 

remain to be studied for almost all of them. 

 

Unfortunately, at present, there is no universal, validated capability for modelling the 

thermodynamic properties of multicomponent electrolyte solutions. Theoretical limitations 

necessitate widespread resort to empirical or so-called ‘semi-empirical’ functions. Amongst the 

many such approaches now available, the Pitzer equations remain, with good reason, pre-

eminent (May et al., 2011). No theoretical framework for aqueous solution thermodynamics 

available at present exhibits a more powerful combination of generality, reach and accuracy.  

 

However, the Pitzer modelling process is generally sensitive to small perturbations, tends to be 

tailored to individual systems and often must resort to using poorly-sourced thermodynamic 

parameters. Despite recent technological developments allowing storage and processing of very 

large physicochemical property and parameter data sets, the present results suggest that the 

fitting process cannot be generalised to achieve an objective, reproducible description of 

measured multicomponent thermodynamic systems. Moreover, since the parameter sets available 

in the literature typically cannot be updated as necessary, thermodynamic inconsistencies, 
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associated with the particular ranges of conditions over which the published fits have been 

obtained, are for all practical purposes unavoidable. 

 

Consequently, aqueous solution chemistry models are often found to be irreproducible and lack 

the reliability necessary for many practical applications. As a particular case in point, it remains 

extremely challenging even to calculate quantitatively the measured solubilities for mixed 

inorganic electrolyte systems available from sources such as Linke (1958, 1965). This goal 

cannot generally be achieved without invoking empirical parameters and other regressed 

correlations fitted individually to each chemical system. 

 

To understand why progress is proving so difficult, this work offers a critique of the limitations 

associated with the parameterization of Pitzer models. It seems more than likely that the general 

conclusions drawn here apply also to other less-often-used, semi-empirical electrolyte models 

such as eNRTL (Song and Chen, 2009), MSA (Triolo et al., 1976), MSA-NRTL (Papaiconomou 

et al., 2002), UNIQUAC (Iliuta, 2002) or the ‘mixed solvent electrolyte model’ (MSE) 

implemented by OLI (Wang et al, 2002; Wang et al., 2004). The temptation to improve the 

fitting of thermodynamic property models by repeatedly introducing new variants with system-

specific basis functions and additional adjustable parameters is not confined to the Pitzer 

equations (e.g. see Partanen, 2012). It is important to remember that these other theoretical 

approaches have so far only been tested in rather narrow ways (Lin et al., 2010) compared to the 

multicomponent modelling applications which have been based on the Pitzer framework. 
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Any framework requiring dozens of empirical parameters to be determined simultaneously in 

order to define the excess Gibbs energy surface over practical ranges of concentration, 

temperature and pressure will likely suffer from difficulties with numerical processing and 

validation. The ability to distinguish between good data and bad is nullified by the multiplicity of 

parameters involved. As von Neumann famously remarked, "With four parameters I can fit an 

elephant, and with five I can make him wiggle his trunk." (Dyson, 2004). There is little practical 

advantage gained by introducing arbitrary empirical parameters, in addition to those given in Eq. 

(1), so that the Pitzer equations fit the data of any given chemical system to specified precision. 

Yet, on the other hand, modelling functions possessing fewer parameters than the Pitzer 

equations, and which are consequently less precise, offer no better solution. To advance aqueous 

solution chemistry modelling, the implications of this dilemma need to be far better understood. 

Only then can they be addressed. Until that time, the Pitzer equations (used with appropriate 

caution) will remain a useful tool in the characterization and harmonization of aqueous 

physicochemical properties (May et al., 2011; Rowland and May, 2013). 

 

 

APPENDIX 

 

Fig. A1 shows the Pitzer fit to Robinson and Stokes' (1970) mean activity coefficient data for 

Al2(SO4)3(aq) After slightly altering the activity coefficient values at the two lowest 

concentrations (Table A1), the data were re-fitted (same Pitzer model function but allowing 

different parameters). The change in the way that the two curves extrapolate to infinite dilution is 

remarkable, regardless of the actual physicochemical behaviour. Thermodynamic frameworks 

with less flexibility, such as the Hückel equation (Partanen, 2012; Rowland and May, 2014), 
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would not be so susceptible to error.  Issues similar to those seen in Case Study B (Fig. 8) can 

thus arise even in a much simpler context. A major distinction between the two examples, of 

course, is that such misbehaviour is considerably less discernible in a multi-dimensional space. 

 

 

Fig. A1  Mean activity coefficient (as natural logarithm) of Al2(SO4)3(aq) at T = 298.15 K; 

symbols are original (pluses) and modified (squares) data from Robinson and Stokes (1970) - see 

Table A1. Pitzer models: fit to original data (solid line); fit to modified data (dashed). 
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Table A1 

Mean activity coefficients of Al2(SO4)3(aq) from Robinson and Stokes (1970) and modified 

versions of the same data, as used to produce Fig. A1. 

m (mol kg–1) γ [70RoS_12002] γ (modified) 

0.1 0.0350 0.0360 

0.2 0.0225 0.0210 

0.3 0.0176 0.0176 

0.4 0.0153 0.0153 

0.5 0.0143 0.0143 

0.6 0.0140 0.0140 

0.7 0.0142 0.0142 

0.8 0.0149 0.0149 

0.9 0.0159 0.0159 

1.0 0.0175 0.0175 
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